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Ethernet in Automotive Networks 

Design and evaluation of rate constrained Ethernet stack transporting J1939 messages 

 

Abstract 

Ethernet as a backbone in automotive networks would to a great extent reduce the cur-

rent bus load on the bandwidth limited CAN-bus. In the future more bandwidth is 

needed and new features require more bandwidth. 

In this report, three real-time Ethernet protocols are analyzed (AFDX, TTEthernet and 

Ethernet AVB). As a result from the investigation a software stack is designed and im-

plemented using the AFDX protocol. 

The prototype uses a concept called virtual links to partition the available bandwidth. A 

periodic scheduler limits the bandwidth based on two parameters set for each virtual 

link. The bandwidth allocation is statically defined for each virtual link. As a result the 

buffer sizes in the Ethernet switch can be decided and as a consequence an upper bound 

on the transmission latencies. 

The prototype is tested with sending and receiving simulated J1939 messages in two 

experiments. The first experiment uses accumulation of message frequencies to para-

meterize the virtual links. The second experiment encapsulates multiple messages in a 

single Ethernet packet. The primary results from the experiments were that encapsula-

tion of multiple messages in a single Ethernet packet is more efficient. 

An advantage with the protocol is that it is possible to use with current smart Ethernet 

switches. An idea how the solution gradually could be introduced has been identified as 

future work. However, it is necessary to further investigate the electrical layer, electro-

magnetic compatibility and cabling. The conclusion for the degree project is that the 

protocol is suitable to use in future Ethernet applications. 

  



 

 

 

Ethernet i fordonsnätverk 

Design och evaluering av flödesbegränsad Ethernet-stack vid transport av J1939-

meddelanden 

 

Sammanfattning 

Ethernet som en stomme i fordonsnätverk skulle till stor del minska den nuvarande 

busslasten på den begränsade CAN-bussen. I framtiden kommer nya tillämpningar att 

kräva mer bandbredd. 

Denna rapport analyserar tre stycken Ethernet-protokoll med realtidskrav (AFDX, 

TTEthernet och Ethernet AVB). Utifrån analysen har en mjukvarustack baserat på 

AFDX designats och implementerats. 

Prototypen använder ett koncept som kallas virtuella länkar för att dela upp den till-

gängliga bandbredden. En virtuell länk är en statisk väg mellan sändande och 

mottagande nod. De virtuella länkarna schemaläggs periodiskt och begränsar band-

bredden baserat på två parametrar som sätts för varje virtuell länk. 

Bandbreddsuppdelningen definieras statiskt för alla virtuella länkar. På så sätt garan-

teras en övre gräns för tiden det tar att överföra ett meddelande eftersom 

buffertstorlekarna i Ethernet-switchen kan bestämmas. 

Protokollstacken testas med att överföra simulerade J1939-meddelanden i två experi-

ment. Det första experimentet använder frekvensackumulering för att parametersätta de 

virtuella länkarna. Det andra experimentet inkapslar flera J1939-meddelanden i ett 

Ethernet-paket. Resultatet från experimenten var att inkapsling av flera J1939-med-

delanden i ett enskilt Ethernet-paket är den mest effektiva lösningen. 

En fördel med detta protokoll är att det kan användas med befintliga smarta Ethernet-

switchar. Ett förslag hur lösningen gradvis kan introduceras ges som framtida arbete. 

Det behövs dock en utredning om det fysiska lagret, elektromagnetisk kompatibilitet, 

kabeldragning samt kontaktering. Slutsatsen för examensarbetet är att protokollet kan 

användas i framtida Ethernet-tillämpningar. 

  



 

 

Preface 

I would like to thank Scania for letting me conduct this degree project. I would also like 

to thank my supervisor at the Royal Institute of Technology Olof Hagsand for the ad-

vice and support during my thesis. 

I further want to thank my supervisor at Scania Jan Lindman for initiating the subject 

and giving me advice and support during my thesis. 

Last but not least I would like to thank all the wonderful people at Scania RESA 

  



 

 

Table of Contents 

1 Introduction ........................................................................................................................... 1 

1.1 Problem Definition ............................................................................................................ 1 

1.2 Goal.. ................................................................................................................................. 2 

1.3 Delimitations ..................................................................................................................... 2 

2 Background ............................................................................................................................ 3 

2.1 Real-Time Systems and Communication .......................................................................... 3 

2.2 Network Layers ................................................................................................................. 4 

2.3 Ethernet ............................................................................................................................. 4 

2.3.1 Topology .................................................................................................................. 5 

2.3.2 Switch Types ............................................................................................................ 6 

2.3.3 Protocol Layout ........................................................................................................ 7 

2.4 Controller Area Network .................................................................................................. 9 

2.4.1 Communication ........................................................................................................ 9 

2.4.2 Protocol Layout ...................................................................................................... 10 

2.4.3 Arbitration .............................................................................................................. 11 

2.4.4 Bit-Stuffing ............................................................................................................ 11 

2.5 J1939 ............................................................................................................................... 12 

2.5.1 Protocol Layout ...................................................................................................... 12 

2.5.2 Parameter Group Number ...................................................................................... 12 

2.5.3 Protocol Data Unit ................................................................................................. 13 

2.6 FlexRay ........................................................................................................................... 14 

2.7 Scania CAN Network...................................................................................................... 14 

3 Available Technology .......................................................................................................... 16 

3.1 AFDX .............................................................................................................................. 16 

3.1.1 Supported Traffic ................................................................................................... 17 

3.1.2 Virtual Links .......................................................................................................... 17 

3.1.3 Virtual Link Scheduling......................................................................................... 19 

3.1.4 End System and subsystems .................................................................................. 19 

3.1.5 Communication ports ............................................................................................. 20 

3.1.6 AFDX Switch ........................................................................................................ 21 



 

 

3.1.7 Frame Format ......................................................................................................... 22 

3.1.8 Current Status ........................................................................................................ 22 

3.2 TTEthernet ...................................................................................................................... 23 

3.2.1 Supported traffic .................................................................................................... 23 

3.2.2 Time Triggered Synchronization ........................................................................... 24 

3.2.3 TTEthernet Switch ................................................................................................. 25 

3.2.4 Frame Format ......................................................................................................... 26 

3.2.5 Current Status ........................................................................................................ 27 

3.3 Ethernet AVB .................................................................................................................. 28 

3.3.1 Supported Traffic ................................................................................................... 28 

3.3.2 IEEE 802.1as Time Synchronization ..................................................................... 28 

3.3.3 IEEE 802.1Qat Stream Reservation ....................................................................... 30 

3.3.4 IEEE 802.1Qav Queuing and Forwarding ............................................................. 31 

3.3.5 AVB Switch ........................................................................................................... 31 

3.3.6 AVB Frame Format ............................................................................................... 32 

3.3.7 Current Status ........................................................................................................ 32 

3.4 Summary of Analyzed Protocols .................................................................................... 33 

4 Design and Implementation ................................................................................................ 35 

4.1 Suggested Ethernet Backbone ......................................................................................... 35 

4.2 The Software Stack ......................................................................................................... 36 

4.3 Platform ........................................................................................................................... 36 

4.4 Tools and Libraries ......................................................................................................... 36 

4.5 Design ............................................................................................................................. 37 

4.6 Transmission of J1939 Messages .................................................................................... 39 

4.6.1 First Experiment Using Frequency Accumulation ................................................ 40 

4.6.2 Second Experiment Using Message Encapsulation ............................................... 41 

5 Results of Experiments ........................................................................................................ 43 

5.1 Summary ......................................................................................................................... 47 

6 Discussion ............................................................................................................................. 48 

6.1 Incremental Updates ....................................................................................................... 48 

6.2 Software and Message Compatibility ............................................................................. 48 



 

 

6.3 Reducing Overhead ......................................................................................................... 49 

6.4 Improvements to the Prototype ....................................................................................... 49 

7 Conclusion ............................................................................................................................ 51 

8 Future Work ........................................................................................................................ 53 

References................................................................................................................................ 54 

Appendix A Delay tables ........................................................................................................ 58 

Appendix B Sequence of Execution ...................................................................................... 60 

Appendix C List of Abbreviations ........................................................................................ 62 

 

 



1 

 

1 Introduction 

This chapter will give the background and an introduction to the problem and what the 

project will cover. 

 

Controller Area Network (CAN) is the current communication system that is in use in 

Scania trucks. In the future improvement and development of the communication 

system will require high speed communication and robustness. Ethernet is one of 

several possible technologies that can meet this demand though there are many 

challenges ahead to realize it in a truck environment. 

 

1.1 Problem Definition 

Today’s usage of CAN (Controller Area Network) is reaching its limits when it comes 

to bandwidth. The vehicle communication bus grows more and more complex for each 

day. The theoretical maximum bandwidth for a single CAN bus is 1 Mbit/s.  In 

automotive applications it is limited to 125 kbit/s - 500 kbit/s. In the future more 

bandwidth is needed and new features require more bandwidth. High bus utilization is a 

problem and one way of reducing bus utilization is to go with higher bandwidth 

solutions. 

A problem with Ethernet in a real-time vehicle network is the difficulty of determining 

response time and determinism. For example on a half duplex network the CSMA/CD 

access method is non-deterministic because if a collision is detected (two nodes are 

transmitting at the same time) the node will wait for a random amount of time before 

trying to transmit again. This creates problems because it is difficult to give real-time 

guarantees for something that waits a random amount of time. 

With full duplex there is no access arbitration to the medium and as a result no 

collisions. One problem remains and that is unrestrained buffer contention in the switch 

and how to give guarantees of an upper bound on the latency when transmitting packets 

from source to destination.  

When integrating the solution there are a couple of things to keep in mind regarding the 

product development process at Scania. 

 

 Same software in all vehicles 

 Incremental updates of ECUs (Electronic Control Unit) 
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 Backward compatibility 

 Parallel releases 

 Parallel verification 

 

1.2 Goal 

The goal is to investigate if and how an Ethernet solution could be implemented and 

adapted to Scanias in-vehicle network. The focus area is protocol implementation. 

An investigation is made where different protocols are researched and evaluated for 

Scania adaptation. A protocol is selected and a simple demonstration of carrying CAN 

messages over an Ethernet backbone shall be made. 

 

1.3 Delimitations 

The report is not about the electrical layer and how the cabling should be done. Focus is 

on investigating suitable Ethernet protocols, developing a simple prototype and how the 

protocol can be implemented and how it could be adapted to Scanias in-vehicle 

network. 
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2 Background 

This chapter will give the reader an introduction to real-time concepts, layered network 

architecture and give the reader the ability to understand the protocols that are 

involved in the investigation. 

 

2.1 Real-Time Systems and Communication 

A simple description of a real-time system is a system that has requirements to complete 

its work and deliver its services on a timely basis.  Examples of such systems include 

telecommunications, digital control and signal processing systems.  

The real-time systems can be found everywhere and provides important services. For 

example when we drive our car the systems control the engine and brakes. It is 

important that these systems function correctly and predictable. 

A Real-Time communication network sends messages between different components in 

a real-time system [1]. The message consists of one or more units called frames, packets 

or cells. What they are called depend on the type of network and the nomenclature used. 

There are two types of timing constraints in real-time communication. Hard timing 

constraints typically imply that the failure to meet a deadline can have fatal 

consequences. For example throttle control on an aircraft. If the movement of the 

throttles does not signal the engines to power up in time the plane could be in serious 

trouble.  

A soft timing constraint typically implies that the failure to meet a deadline is 

undesirable. For example if a user is watching a live stream of a soccer game and there 

are a couple of video frames that miss their deadlines it might produce a short hiccup in 

the smoothness of the frame rate but its consequences will not be fatal. At worst the 

viewer is slightly annoyed. 

In other words soft-real-time requirements have soft timing constraints and hard-real-

time requirements have hard timing constrains. 

A nondeterministic network have no guarantees for packet transmission, response time 

and packet delay variation. With a strictly deterministic network it is possible to 

produce an offline schedule for the packets sent in the network and verify the feasibility 

for the schedule before you run it. Something in between a nondeterministic and a 

strictly deterministic network is a network where it is possible to calculate an upper 

bound for the response time and the packet delay variation. 
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2.2 Network Layers 

A common way of describing the communication in a network is to use a layered 

architecture. An architecture known the TCP/IP model was created by DARPA in the 

seventies. DARPA is an agency of the United States Department of Defense. The 

TCP/IP model is also known as the Internet model. 

Different authors of books covering the TCP/IP model use either a four layer 

architecture or a five layer architecture. It has to do with whether the link layer covers 

the physical layer or if a hardware layer is assumed below the link layer [11]. The 

layered architecture explained here is the five layer model as depicted in Figure 1. 

 

The Hardware layer is responsible for sending the individual bits on the wire from one 

node to another. The data link layer encapsulates groups of bits into frames from higher 

levels in the architecture. The network layer provides support for communication 

between networks. The network layer is not responsible for reliable transmission. This 

implies that it has no guarantee that the packets will arrive in a proper way. It is up to 

the transport layer to provide a mechanism to guarantee reliable service. Lastly the 

application layer is responsible for the process to process communication over the 

network. 

 

2.3 Ethernet 

Ethernet is a family of frame based networking technologies for local area networks 

(LANs) [2]. A LAN is a network that connects devices in a limited area such as a home, 

office buildings et cetera. Several connected LANs that spans a city or a larger area is 

called a Metropolitan Area Network (MAN). A MAN usually connects the LANs with a 

Application 

Data Link 

Network 

Transport 

Hardware 

Figure 1. TCP/IP model 
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high capacity backbone using fiber optical links. Described and of interest in this report 

are LANs. 

A LAN can be used in a wide variety of topologies such as bus, line or star. It can work 

both in half-duplex and full-duplex mode. There are a number of different transmission 

mediums that can be used such as coaxial, copper and fiber optic cable. The LAN 

technology was developed at Xerox PARC in the seventies. The first IEEE 802.3 

standard was published in 1983 and called 10Base5. 10Base5 has a bandwidth of 10 

Mbit/s over thick coax cable. The standard is continuously evolving and today there are 

Ethernet controllers and switches available with a capacity from 10 Mbit/s [2] to 40 

Gbit/s [3]. 

 

2.3.1 Topology 

Two common topologies in a LAN are bus and star. In bus based architectures the 

nodes are connected directly to the cable as depicted in Figure 2. 

 

 

 

 

 

 

 

 

 

The channel is shared between all the nodes connected to the cable and some sort of 

access control is needed. The most common method of access control for a bus based 

architecture is CSMA/CD. 

CSMA/CD stands for Carrier Sense Multiple Access with Collision Detection. For a 

station to transmit on the shared medium, the station waits for a quiet period. If a 

message that is sent from one node collides with a message from another node, both 

nodes will continue to transmit for an additional predefined period. This is done to 

ensure that all stations are able to listen to the collision. If a collision is detected the 

station will not try to resend the message for a random amount of time.  

The problem with CSMA/CD is that under high traffic situations the throughput and 

maximum delay can become unacceptable. It is also nondeterministic due to the random 

Figure 2. Ethernet bus topology 
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wait that is conducted when a message collision occurs [9]. In a star based architecture 

the nodes are connected to a central switch which connects the segments with each other 

as seen in Figure 3. Switched Ethernet is the most common implementation for LANs 

today. 

 

 

 

 

 

 

 

 

A huge benefit with a switch is that each segment is able to run in full duplex operation. 

With full duplex operation each station can transmit and receive at the same time. 

Consequently there is no need for an algorithm to check for collision and wait for the 

medium to be silent.  

 

2.3.2 Switch Types 

Layer 2 switches (data link layer) use the media access control (MAC) destination 

address as a source to forward packets. The switch processes the packets when they 

arrive at a switch port.  

A standard Ethernet switch dynamically updates the MAC destination table based on 

the traffic that flows through the switch. All entries in the table have an age associated 

with it. If no packets are received for a specific flow the entry will be deleted. 

Different types of switches have an impact on latency [10]. A Cut-Through switch waits 

until the MAC destination address is received and copied into the internal buffer in the 

switch. It then looks in the MAC filter table to determine the outgoing port. The packet 

is forwarded as soon as the switch reads the destination address. This results in 

decreased latency but invalid packets are also forwarded. 

The Store and Forward switch waits until the entire packet is received. The entire packet 

is copied into the internal buffer and the switch calculates the cyclic redundancy check 

(CRC). If the packet contains an error or has an invalid size the packet is dropped. After 

the CRC is calculated and the packet contains no error the switch checks the MAC filter 

Figure 3. Ethernet star topology 
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table for the destination address to determine the outgoing interface. Modern switches 

are of Store and Forward type. 

2.3.3 Protocol Layout 

There are several types of Ethernet frame formats. The different types have different 

formats. The Ethernet version 2 is the most common type used today. The frame format 

explained in this project is the Ethernet version 2 packet and frame format and is 

depicted in Figure 4. 

 

 

 

 

 

 

 

 

The packet format [2] has 8 bytes before the frame and consists of the preamble field 

and the start frame delimiter. The preamble field is 7 bytes and is used to signal the 

transmission of a new packet, it contains alternating 0s and 1s and is used to 

synchronize the controller. The Start Frame Delimiter (SFD) is 1 byte and contains the 

sequence 10101011 (0xAB). It is used to denote start of frame. The header of the frame 

is either 14 bytes or 18 bytes as depicted in Figure 5. Virtual LAN (VLAN) tagging that 

is specified in [5] increases the maximum frame size with 4 bytes. VLAN adds a 4 byte 

field between the source address and the length/type field. Otherwise the header consists 

of the destination, source and the length/type field. 

 

 

 

 

 

 

 

 

 

 

Frame 

Packet 

PRE 

 

 

SFD Header Data CRC IPG 

7 1 14-18 46-1500 4 

(bytes) 

12 

2 

2 

Destination Source Type/ Length 

Destination Source Type/ Length VLAN 

6 6 4 

(bytes) 
6 6 

(bytes) 

Figure 4. The structure of an Ethernet packet 

Figure 5. Two Ethernet headers 
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The MAC-address fields are 6 bytes each. One for the destination address and one for 

the source address.  

The least significant bit in the most significant octet in a MAC-address field is used as 

an address type designation bit. If the bit is 0 it indicates that the field contains an 

individual address. If bit is 1 it indicates that the field contains a group address that 

indentifies none, one or more or all of the stations (multicast). The source field least 

significant bit is reserved and set to 0. The second bit in a MAC-address field is used to 

distinguish between locally or globally administered addresses. For a globally 

administered address the bit is set to 0 otherwise 1. For broadcast bit is set to 1. 

So to recap there are basically two type of MAC addresses individual or group/multi-

destination. Individual addresses are associated with a particular station on the network. 

Group/multi destination addresses are two kinds. Either they are multicast-group 

address or broadcast. The broadcast address is predefined to all ones and defines all 

stations on the LAN. 

If VLAN tagging is used 2 bytes of the VLAN field are used as the Tag Protocol 

Identifier (TPI). A special value is used to identify it as an 802.1Q frame (0x8100). The 

other 2 bytes are used as a 3-bit priority field, a 1 bit field that is always set to 0 for 

Ethernet switches and a 12 bit VLAN identifier field that is used to identify which 

VLAN the frame belongs to. 

The length/type field is 2 bytes. If the value is less than or equal to 1500 the field 

indicates the number of data bytes in the following data field. If the value is greater than 

or equal to 1536, the field indicates the type of client protocol that is carried in the data 

field. 

Originally the data field supported payloads between 46-1500 bytes. Today there are 

extensions called jumbo frames and super jumbo frames. A jumbo frame can carry up to 

9000 bytes of payload and a super jumbo frame up to 64 000 bytes. If the length is less 

than the minimum, a pad field is added after the data field. The minimum data field size 

of 46 bytes is required for correct CSMA/CD protocol operation. If the payload is less 

than 46 bytes the pad field is used up to a minimum of 46 bytes for the data + pad field. 

The CRC is computed as a function of the frame contents except the preamble and SFD.  

Inter Packet Gap (IPG) according to [2] is used to allow a minimum idle period between 

transmission of frames. It is used so the devices can prepare for reception of the next 

frame. The minimum IPG is specified as 96 bit-times which is equivalent to the time it 

takes to transfer a 96 / 8 = 12 byte field. A more detailed description can be found in 

[2]. 
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2.4 Controller Area Network 

Controller Area Network (CAN) was originally designed for automotive applications. It 

was introduced in 1986 by Robert Bosh GmbH at the Society of Automotive Engineers 

(SAE) congress. Prior to CAN automotive manufacturers connected devices with point-

to-point links as seen in Figure 6. The added weight and the significant amount of 

wiring resulted in expensive routing. To reduce cost and wiring a better vehicle network 

was needed. 

 

 

 

 

 

 

 

The standard [5] for CAN was published in 1993(CAN 2.0 A) and specified a maximum 

transfer rate of 1 Mbit/s. In 1995 an extension was made that increased the CAN 

identifier field from 11 to 29 bits (CAN 2.0 B). The standardized application layer 

J1939 uses the extended CAN format and it is also the format that is described in this 

report. 

It is not only in the automotive industry that CAN is used. It is popular in the textile 

industry and is also found in ships, trains and aircrafts to name a few. 

 

2.4.1 Communication 

The CAN bus is used for communication between ECU’s (electronic control units). In a 

truck there are different control units for different parts. For example engine control, 

transmission and antilock braking. The ECU’s might need sensor data from sensors 

located in the vehicle and the CAN standard was developed to fill this need. 

The CAN network is a serial bus network (line topology) as depicted in Figure 7. The 

messages are generally not addressed to a specific node but broadcasted. It is up to the 

individual node if it is interested in the message or not. 

 

 

 

Figure 6. Point to point network 

Figure 7. CAN serial bus 
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If a node wants to transmit on the bus it waits until the bus is free. All messages have an 

identifier that also works as the priority of the message. The maximum payload for a 

CAN message is only 8 bytes. It was designed to be used to send signals to trigger 

events or to send sensor data. 

The CAN network uses wired-AND logic and the binary model of dominant and 

recessive bits. A dominant bit is a logical 0 and recessive is a logical 1. If at the same 

time a node transmits a dominant bit (0) and another node transmits a recessive bit (1) a 

dominant (0) is seen on the bus, the result is the logical AND between the two. 

 

2.4.2 Protocol Layout 

The CAN frame format explained here is the extended format (CAN2.0 B) [5]. The 

main difference between the standard format (CAN2.0 A) and the extended format is 

that the id field has been extended to 29 bits instead of 11 bits in the original standard. 

The application protocol SAE J1939 is also based upon the extended format. The CAN 

frame format is depicted in Figure 8. 

 

 

 

 

 

 

Before the frame a 1 bit Start of Frame (SOF) is sent as a hard synchronize mechanism. 

The arbitration field consists of an 29 bit Identifier divided into two part Identifier A (11 

bits) and Identifier B (18 bits) and three one bit fields called SRR, IDE and RTR. The 

IDE bit identifies whether the frame is a standard frame or an extended frame. See the 

ISO 11898 Part 1 for a more detailed description. 

The 6 bit control field consists of 2 bits called r0 and r1 and is reserved.  The other four 

bits include the Data Length Code (DLC) and is used to tell the size of the following 

data field. The data field can be anything between 0 to 8 bytes large. The CRC field 

consists of a 15 bit CRC sequence followed by a 1 bit CRC delimiter.  The ACK field 

contains a 1 bit ACK slot followed by a 1 bit ACK delimiter. The transmitting node 

sends these two bits recessively and it expects at least one of the receivers to 

acknowledge the frame.  

The frame is acknowledged if the receiving node receives the message without errors it 

will then overwrite the ACK slot with a dominant bit. After the ACK field the end of 

SOF Arbitration 

Field 

Data Field Control 

Field 

CRC 

Field 

ACK 

Field 

EOF IFS 

1 32 6 16 2 7 3 0-64 

(bits) 

Figure 8. CAN frame format 
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frame field (EOF) that denotes the end of the CAN frame. The Inter Frame Space (IFS) 

separates messages from each other. It is the minimum amount of space between 

adjacent frames.  

 

2.4.3 Arbitration 

When arbitrating all the transmitters compare the level of the bit transmitted with the 

level that is monitored on the bus. If the bits are equal the node continues. If they are 

not equal the node stops transmitting. As a result the CAN message with the highest 

priority will succeed and the node that is trying to transmit the lower priority message 

will sense this and stop. All messages that are sent are available to all nodes on the 

network and it is up the each node if it is interested in the message. 

 

2.4.4 Bit-Stuffing 

The bit encoding in CAN is non-return to zero (NRZ). With NRZ the signal will remain 

at 0 for multiple bits of 0 and the other way around. To prevent transceivers and 

receivers to lose synchronization a stuff bit is used. The bit stuffing causes a variable 

packet size that depends on the bit representation of the packet. 

Bit stuffing in CAN is triggered when five bits of the same type is sent in a row [6]. An 

extra bit of the opposite polarity is then sent by the transceiver when it detects that it has 

sent five bits of the same polarity. Make a note of that the stuff bit is included in the 

computation. This implies that the worst case pattern is not five bits of one polarity 

followed by five bits of the opposite polarity and so on but an initial five bits followed 

by four bits of opposite polarity as depicted in Figure 9.  

 

 

Not all bits in a CAN frame is affected by the bit stuffing. The arbitration field, control 

field, data field and the CRC field are affected by the bit stuffing. A zero payload CAN 

frame has 54 (out of 67) bits affected by bit stuffing. The worst case number of stuff-

bits [6] is 

00000 1111 0000 1111 0000 1111 

000001 11110 00001 11110 00001 11110 After stuffing 

Figure 9. Worst case bit stuffing pattern 

Before stuffing 
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where d is equal to the data payload in bytes. As a result the minimum CAN frame can 

be anywhere from 67 bits to 80 bits depending on the bit sequence. 

 

2.5 J1939 

J1939 is the application protocol standard Scania uses when sending messages on the 

CAN bus. J1939 defines message identifiers and the message content. Its focus was 

primarily to standardize the messages for the engine, transmission and brake 

applications but has later been extended to various functions and applications. It was 

created in the beginning of the nineties by a committee called Society of Automotive 

Engineers (SAE). 

 

2.5.1 Protocol Layout 

The J1939 frame as seen in Figure 10 uses the 29-bit ID field that is part of the 

arbitration field in CAN to store PGN (parameter group number) and source address [7]. 

A parameter group is assembled of parameters defined in the J1939 standard. For 

example oil temperature, vehicle speed and so on. The PGN is used to identify the 

content of the data field. 

 

 

 

 

 

 

 

 

 

2.5.2 Parameter Group Number 

The PGN consists of a 3 bit priority field, the value 0 is the highest priority and 7 the 

lowest. Following the priority field is the EDP (extended data page) and the DP (data 

page). The extended data page bit is used together with the data page bit to determine 

8 

SOF Arbitration 

Field 

Data Field Control 

Field 

CRC 

Field 

ACK 

Field 

EOF IFS 

1 32 6 16 2 7 3 0-64 

PGN Source 

Priority EDP DP PDU  

Format 

PDU  

Specific 

21 

3 1 1 8 8 

(bits) 

Figure 10. The structure of J1939 
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the structure of the CAN identifier of the can data frame. The definitions for all the 

combinations can be seen in [7]. The PDU format is an 8 bit field and is one of the 

fields used to identify the parameter group number. Parameter group number is used to 

identify or label commands, data, requests and acknowledgments. A parameter is data 

such as engine rpm. It is common to group parameters together to utilize all the 8 bytes 

payload in a single CAN frame. 

PDU specific field is 8 bits and can be a destination address, group extension. It 

depends on PDU format, if the value of the PDU format is below 240 (0xF0) the PDU 

specific field is a destination address. The destination field contains the specific address 

to which the CAN message is sent. The value 255 is a global destination address and 

requires that all the nodes listen and respond. If it is between 240-255 (0xF0-0xFF) then 

the field contains a group extension. The group extension extends the number of 

parameter group numbers. Without the group extension you have 240 possible 

parameter group numbers per data page. There are two possible data pages (DP field 

can be 0 or 1) so that gives a total of 

               

With the group extension the PDU specific field together with the four least significant 

bits in the PDU format field provides  

              

The total parameter group numbers are 

                      

When more than 8 bytes is needed for a Parameter group the data is split into multiple 

CAN data frames. Examples of Parameter groups can be found in [8]. 

 

2.5.3 Protocol Data Unit 

A J1939 PDU (protocol data unit) [7] consists of the PGN, Source and the data field as 

depicted in Figure 11. There can only be one PDU per CAN data frame although it can 

take more than one CAN data frame to send all the data for one PGN. 

 

 

 

PGN Source 

21 8 0-64 (bits) 

Data Field 

Figure 11. The J1939 Protocol Data Unit 
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2.6 FlexRay 

FlexRay is an automotive communication protocol. It was designed as an improvement 

over CAN and supports high data rates up to 20 Mbit/s. The protocol supports both time 

triggered and event triggered communication. It uses a bus in a comparable way to 

CAN. It supports dual redundancy and combined with the time triggered 

communication it meets the reliability requirements for future applications such as 

brake-by-wire. It is currently in use today by Audi, BMW to name a few [43]. 

 

2.7 Scania CAN Network 

The Scania CAN network consists of three communication buses (green, yellow and 

red). It uses J1939 as described in section 2.6. The buses are connected to a gateway 

called Coordinator (COO) as depicted in Figure 12. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The Coordinator gates messages between the different buses. The buses are color coded 

based on how time critical the communication on the bus is. The red bus is the most 

time critical. It handles for example the communication between the engine, 

transmission and brakes. The yellow bus is used for less time critical communication 

and the green bus is used for the least time critical communication. Today the network 
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Figure 12. Scania CAN network 
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load on the buses is reaching the limit of what is possible using the current CAN bus. 

My suggestion is to create a converged Ethernet backbone with nodes capable of high 

bandwidth transmissions.  

High bandwidth applications such as infotainment and driver assist system (camera 

system et cetera) require an updated architecture. To converge the communication more 

buses should be connected through the use of gateways. If Ethernet is adopted it could 

be used for the diagnostic interface instead of the current interface over CAN. 

Diagnostics could then be performed using a notebook with a standard TCP/IP stack. 

There is currently a standard in development for diagnostic over IP called DoIP [42]. 

Flashing of ECU’s is also a bottleneck on the current CAN bus that could be improved 

using Ethernet. 

The architecture requires a suitable Ethernet protocol for communication over the 

Ethernet backbone. In the following chapter different Ethernet solutions are described 

and explained. The goal is to find a suitable protocol for real-time communication. 
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3 Available Technology 

This chapter explains the three different Ethernet technologies studied in this project. A 

summary of the difference of the protocol is described in chapter 3.4 

 

When selecting the Ethernet protocols it is important that they have real-time 

characteristics, solutions for the unrestrained buffer contention in the switch and how to 

give guarantees of an upper bound on the latency. The three selected protocols are 

AFDX, TTEthernet and Ethernet AVB. AFDX is selected because it is an established 

standard currently in use in the airline industry. TTEthernet is an interesting technology 

that supports time triggered communication and can be an alternative to the time 

triggered protocol FlexRay that is proposed as the successor to the CAN bus. Last but 

not least Ethernet AVB, a standard from IEEE and aimed at the consumer/professional 

audio video market that has the capability to hit a large market and as a consequence 

create lower cost Ethernet hardware with real-time support. 

 

3.1 AFDX 

Avionics Full Duplex Switched Ethernet (AFDX) is specified in ARINC 664 Part 7. It 

is a standard for a deterministic data network based on 10 or 100 Mbit/s switched 

Ethernet. It was initiated by Airbus in the design and creation of the A380 aircraft. The 

predecessor to AFDX, ARINC 429 is a point to multipoint bus system that supports 

one-to-one or one-to-many connections. AFDX is an improvement compared to ARINC 

429 due to the higher data transfer rate (approximately one thousand times faster) and 

less wiring is needed which reduces wiring runs and the weight [12]. 

The most important elements of an AFDX network are 

 AFDX End System: The end system is the interface between the subsystems (for 

example flight control computer) and the network.  

 AFDX Switch: A full-duplex switch. The switch forwards Ethernet frames to the 

correct destination. 

 AFDX Virtual Links: A virtual link is a unidirectional virtual connection from 

one-to-one or one-to-many End Systems. 
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3.1.1 Supported Traffic 

AFDX supports rate constrained traffic. The AFDX network provides an upper bound 

on latency and determinism [18] through modifications and restrictions to the Ethernet 

protocol in the following way 

 Bandwidth partition: Maximum data packet size and scheduling of packets to 

allow guaranteed bandwidth 

 Defined packet order: Packets are received in the same order they are sent 

 Dual Redundancy: An end station transmit the same packet out of two ports 

The communication protocol is derived from IEEE 802.3 MAC addressing, User 

Datagram (UDP) and Internet Protocol (IP). 

 

3.1.2 Virtual Links 

Virtual links partition the switched network into communication channels with a 

predefined link bandwidth and scheduling time. The virtual link is unidirectional and 

uses a 16-bit identifier that is part of the MAC destination address as seen in Figure 13. 

The switches are configured to route packets based on the virtual link ID. One Virtual 

link will have one or more predefined end systems that the switch sends packets to. A 

virtual link can only have one sending end system but multiple receiving end systems 

[13]. A notice can be made that all MAC addresses are locally administered and of 

multicast type according to the IEEE 802.3 standard (the second and the least 

significant bit of the most significant address octet is set to 1) . 

 

 

 

 

The virtual link has two parameters 

 Bandwidth Allocation Gap (BAG) , the BAG value restrict how often the virtual 

link is scheduled (how often it is possible to send a message on the virtual link). 

In the AFDX standard the valid range for the BAG value is in powers of 2 from 

1 to 128 ms. 

 Lmax is the largest Ethernet frame size the virtual link can transmit (IP layer 

takes care of segmentation and reassembly). 

 

32 bit constant field 

0000 0011 0000 0000 0000 0000 0000 0000 

Virtual link ID 

16 bit unsigned int 

Figure 13. AFDX MAC destination address 
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Figure 14 below exemplifies two virtual links in an AFDX network. 

 

 

 

 

 

 

 

 

As an example a virtual link with a BAG of 8 ms and an Lmax of 200 bytes. The 

maximum bandwidth in kbit/s on the virtual link is  

     

   
 

    

 
               /s 

Choosing an appropriate BAG for multiple messages transmitted through the same 

virtual link can be done in the following way. If you have three messages m1, m2 and 

m3, with a frequency of 15, 30 and 40 Hz, you add their frequencies together 

               

The period for a frequency of 85 Hz is 11.8 ms. The closest BAG that is less than 11.8 

ms is 8 ms. A period of 8 ms corresponds to a frequency of 125 Hz. 

If m3is the message with the highest frequency of 40 Hz and its deadline is equal to its 

period (25 ms). The worst case scenario happens if all the messages arrives within a 

single scheduling period. Message m3 is still scheduled and transmitted before its 

deadline because the virtual link scheduling frequency (125 Hz) is larger than the 

combined frequency (85 Hz) of the three messages as seen in Figure 15 below. 
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Figure 15. AFDX scheduling three messages 

Figure 14. AFDX virtual link routing 
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Assured service is an important concept for the AFDX network. The bandwidth and the 

end-to-end latency for each virtual link are guaranteed. The specification does not cover 

guarantee of packet delivery. It is up to the individual application to handle transmission 

acknowledgement and retransmission requests [15]. 

 

3.1.3 Virtual Link Scheduling 

The virtual link scheduler in each end system is responsible for the transmit schedule. 

Applications send messages to the communication ports. The messages are encapsulated 

within the UDP, IP and Ethernet frames. It makes sure that the bandwidth limit based on 

the virtual link BAG and Lmax parameters are under control and it multiplexes all the 

virtual links as depicted in Figure 16. The multiplexing of virtual links can introduce 

jitter if they are scheduled in the same time slot [12]. 

 

 

 

 

 

 

 

3.1.4 End System and subsystems 

The end system in an AFDX network is the interface between the subsystems and the 

AFDX switch. One computer system encapsulates multiple subsystems and an end 

system as seen in Figure 17. The subsystems are partitioned and isolated from each 

other. It is implemented by restricting the address space and limiting the amount of 

processor time each subsystem can use. Actuators and sensors are connected to each 

subsystem, the applications running in each subsystem reads data from the actuators and 

sensors and transmits messages to the end system. 
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Figure 16. AFDX virtual link scheduling 

Figure 17. AFDX computer system 



20 

 

An AFDX network is dual redundant as depicted in Figure 18. The networks are called 

the A and B network. When the end system receives a message on either the A or the B 

network the message is first controlled by the integrity checker. It detects and eliminates 

invalid frames. The redundancy management is responsible for determining whether it 

should drop the packet or pass it to the upper layer of the protocol stack. This is based 

on if it has already received a packet with the same sequence number and associated 

with same virtual link. The applications communicate with each other by sending 

messages using communication ports. End systems are identified with two 8-bit IDs: the 

Network ID and Equipment ID. The identifiers are used to create the source MAC 

address and the unicast IP address [14]. 

 

 

 

 

 

 

 

3.1.5 Communication ports 

There are three types of ports described in the AFDX standard. They are queuing, 

sampling and service access ports (SAP) [12]. 

The queuing port is message oriented. The queue size is preconfigured and the queue 

will accept messages until it is full. A transmitting queuing port uses a FIFO based 

method. Messages are appended to the queue and removed at each time instant the 

virtual link connected to the port is scheduled. If there are no more messages in the 

queue the transmission will stop. The receiver queuing port appends messages to the 

receiver port queue. It does not overwrite the current messages compared to the 

sampling port and when the application using the port receives a message it is removed 

from the queue port as seen in Figure 19. 
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Figure 18. AFDX end system 

Figure 19. AFDX queuing port 
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The sampling port can be realized as a queuing port with a capacity of one message as 

depicted in Figure 20. The sampling port can be read multiple times because the 

message is not removed from the buffer. If a message is sent it overwrites the old 

message in the buffer. A message is sent at each instant the virtual link is scheduled. If 

the transmitting application has not written a new message to the port the old message is 

sent. Each sampling port has a freshness indicator that tells when the last message was 

received. This way an application can tell whether the sending node has stopped 

sending or if it is sending the same message repeatedly. 

 

 

 

 

The service access ports are used for communication between AFDX components and 

non AFDX components. The applications using service access ports create the 

connection by specifying the IP destination address and UDP port number dynamically. 

The communication ports are carried by the virtual links.  At design time you assign 

ports to virtual links based on the type of traffic you send through the port. 

 

3.1.6 AFDX Switch 

The AFDX switch forwards packets according to a static MAC-table. With the AFDX 

switch each MAC address in the table correspond to a virtual link identifier. 

At a minimum a managed switch with a programmable MAC-table and the ability to 

statically define the table is needed. The Rx and Tx buffers store packets in a FIFO 

order. The CPU move packets from the incoming buffer and examines the destination 

MAC-address (virtual link identifier). It finds the virtual link identifier entry in the table 

and route the packets to the outgoing buffer of the correct port. 

Certified AFDX switches also contain functions for filtering, policing and monitoring. 

The filtering is based on frame integrity, frame length and valid destination in the 

address table. Traffic policing is based on a token bucket algorithm. A token bucket 

algorithm keeps a token account for each virtual link. The account is credited with 

tokens as time progress. This is based on the BAG and the maximum size of a packet 

for the virtual link. When a frame is received it checks the account and if enough credits 

are available the packet is sent and credits debited. The amount of token is limited by 

the maximum jitter that is allowed. The monitoring function is used to log switch 

operation and the health of the network. It is the job of the traffic policing to make sure 

that no virtual links routed through the switch exceeds its maximum bandwidth [15].  

M1 M1 M1 

Figure 20. AFDX sampling port 
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3.1.7 Frame Format 

The Ethernet payload for an AFDX frame as seen in Figure 21 consists of the IP packet 

(header and payload). The IP packet payload consists of the UDP header and payload. 

The UDP payload consists of the AFDX message and a one byte sequence number. The 

IP payload supports fragmentation control for large UDP packets using queuing ports. 

The IP header contains a destination end system id, partition id (which subsystem 

partition it want to address) or a multicast address. If it is a multicast address the 

destination IP address will contain the virtual link id. The UDP header contains the 

source and destination port number (communication port). The sequence number is used 

for missing packet detection and the redundancy management in the receiving end 

system. For the specifics about AFDX messages payloads in avionics see [14] 

 

 

 

 

 

3.1.8 Current Status 

AFDX is currently in use in the Airbus A380, A400M aircraft and Boeing 787 

Dreamliner [16]. It is used as the backbone between flight computer, fuel system, 

engine control and others. 

In a paper by NASA [17] a laboratory experiment was performed using a Cisco 

(Catalyst 2900) switch. It was shown that the switch is capable of performing 30% from 

the AFDX specification of a maximum jitter of 500 µs. 

At the SAE 2011 World Congress and Exhibition in April a paper was presented [19]. 

They did a comparison between CAN, FlexRay and Ethernet (AFDX) for ABS systems. 

It was shown that a 100 Mbit/s AFDX network achieved identical performance 

compared to a 10 Mbit/s FlexRay solution. 

  

Header AFDX payload CRC IP header UDP 

header 

SEQ 

No 

4 1 17-1471 8 20 14 

(bytes) 

Figure 21. AFDX Ethernet frame 
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3.2 TTEthernet 

TT-Ethernet was the name of a research project conducted by the Real-Time System 

Group at Vienna University of Technology in 2000. The academic project presented a 

time triggered solution over Ethernet hardware. The goal was to produce a solution for 

safety-critical real-time systems in automotive, avionics and railway domains. [25]  

TTEthernet is a shared development involving TT-Tech and Honeywell that continued 

and improved the previous academic research project. It introduced scalable fault 

tolerance and support for communication with different real-time requirements. As a 

result three different traffic classes were introduced (time triggered rate constrained and 

best effort traffic). The protocol supports fault tolerant configuration in a similar way to 

the AFDX protocol with two ports per node and two independent switches.  

 

3.2.1 Supported traffic 

TT-Ethernet supports three types of traffic classes 

 Time triggered traffic (TT) 

 Rate constrained traffic (RC) 

 Best effort traffic (BE) 

Time triggered communication sends traffic based on global synchronized time. The 

time triggered packets are sent at predefined times and take priority over all other traffic 

types in the network. Messages from higher layer protocol like IP or UDP can be made 

time-triggered without modification to the messages themselves. The actual overhead 

from the protocol that enables time triggered traffic is sent in special messages. 

TTEthernet protocol with time triggered communication is as a result only concerned 

about when a message is sent not what specific content the message has. Time triggered 

traffic is used for applications that require low latency, little jitter and high deterministic 

behavior [20].  

Rate constrained messages are used for applications with less stringent requirements 

than time triggered communication. The rate constrained traffic supported in 

TTEthernet is identical to the previous described technology AFDX. The AFDX 

standard segments the network into virtual links with predefined bandwidth limits, the 

traffic is shaped with a periodic leaky bucket in each end station. This creates a low 

upper limit on the buffers in each switch and a bounded latency on each virtual link. 

The rate constrained traffic is not sent based on a global synchronized time. A rate 

constrained message can suffer some delay if a time triggered message is transmitted 

via the same outgoing port at the same time [20]. 
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Best effort traffic has the lowest priority. Both rate constrained and time triggered traffic 

has priority over best effort traffic that can be delayed or discarded. No guarantees are 

given and switches can drop messages if the buffers overflow. Best effort traffic should 

use some sort of acknowledgement such as TCP/IP otherwise it is possible to lose 

messages [20]. 

 

3.2.2 Time Triggered Synchronization 

The time synchronization is a significant part to support time triggered traffic. The 

global time synchronization in TT-Ethernet uses frames called protocol control frames 

(PCF) to synchronize the nodes with each other. The synchronization domain is 

periodically resynchronized in intervals called integration cycles. Such a cycle could be 

one millisecond but depends on the amount of the acceptable clock drift [20]. A 

synchronization domain in TT-Ethernet contains three types of devices 

 Synchronization Master 

 Synchronization Client 

 Compression Master 

It is usually the end devices that are synchronization masters or clients and the switches 

compression masters. The synchronization is based on a simple two step approach. The 

synchronization masters is used as a base clock that transmits clock control messages to 

the compression master as seen in Figure 22 and 23. In first step the synchronization 

masters send clock control messages to the compression master. In the second step the 

compression master calculates the global time by averaging the time of all incoming 

frames from the synchronization masters [26]. A new protocol control frame is sent to 

all synchronization clients and masters which is used for resynchronization of the local 

clocks. All the nodes updates the local clock with the new global time received [21] 
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3.2.3 TTEthernet Switch 

The TTEthernet switch can differentiate between time triggered traffic and other types 

of traffic by using the content of the Ethernet destination address [22]. When other 

traffic types such as rate constrained and best effort traffic is mixed it is important that 

lower priority traffic does not interfere with time triggered traffic. There are three 

different integration methods that is used when contention occurs on the outgoing ports 

 Preemption 

 Timely Block 

 Shuffling 

A Preemptive method preempts low priority traffic if a time triggered message is 

scheduled at the same time instant.  Such a method provides high real-time quality 

because the outgoing ports for a time triggered message is free at the same instant as the 

time triggered message arrives. A negative aspect is the generation of false messages 

due to truncation.  

Timely Block makes sure that the port is free based on the amount of time it takes to 

send a low priority message. If it is calculated that the low priority message intrudes on 

the global time when a triggered message is scheduled it is blocked. It provides the 

same real-time qualities as the preemptive method but may be resource inefficient.  

Shuffling delays the high priority message if a low priority message is already 

transmitting. Such a method provides resource efficiency but low real-time quality.   

In the paper TTEthernet Dataflow Concept [22] it is stated that TTEthernet uses timely 

block and shuffling but prototypes of preemptive switches exists. 

A traffic schedule for the time triggered communication needs to be uploaded to all the 

switches in the network that have connected devices using time triggered traffic. The 

switch is reserved for time triggered traffic at the instants defined in the schedule.  
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As an example if three nodes send a mix of time triggered, rate constrained and best 

effort traffic the following can occur. The switch has received the best effort message 

from node 2 but a scheduled time triggered message from node 1interrupts the 

transmission of the best effort message. During the transmission of the time triggered 

message a rate constrained message from node 3 is received. The best effort message 

has to wait because it has lower priority than rate constrained traffic. The final 

serialization of the messages to node 4 is depicted in Figure 24. 

 

 

 

 

 

 

 

3.2.4 Frame Format 

The frame format is similar to the AFDX except that it has not standardized that the 

payload is an UDP/IP packet. The MAC destination address is used to identify critical 

traffic (time triggered and rate constrained). It consists of a 4 byte CT-Marker to 

determine traffic type and a 2 byte CT-ID to determine message (virtual link id if traffic 

is AFDX) [23] as depicted in Figure 25. 

Specific time triggered information is carried in special frames called Protocol Control 

Frame (PCF) [21]. They are identified with the type/length field set to 0x891d. The PCF 

contains information used to synchronize the devices in a TTEthernet network. Both the 

PCF and the actual time triggered messages are sent with broadcast. 
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Figure 24. A TTEthernet traffic cycle with TT, BE and RC traffic 

Figure 25. TTEthernet frame using TT-traffic 
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If AFDX frames are carried in a TTEthernet network it uses the same format as 

described in section 3.1. 

 

3.2.5 Current Status 

TTEthernet has been proposed as a new Society of Automotive Engineers (SAE) 

standard called AS6802. It is currently under development as of 2011[21]. The 

proposed SAE standard called AS6802 has several supporters for example Lockheed 

Martin, Bombardier, Honeywell and BAE Systems to name a few. 

A comparison between FlexRay and time-triggered Ethernet solution has been made 

[24]. The results showed that time-triggered Ethernet is a suitable replacement of a 

current in-vehicle network. 

TTEthernet is used as the backbone in NASA’s Orion crew exploration vehicle. The 

Orion vehicle is the currently under development and is the successor to the recently 

retired space shuttle [25]. 
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3.3 Ethernet AVB 

Ethernet AVB is the IEEE take on a real-time Ethernet solution. AVB stands for Audio 

Video Bridging and the original work was carried out by an 802.3 Ethernet study group 

that was investigating next generation digital homes. The work was moved over to an 

802.1 AVB task group because most of the work needed to be done on the architectural 

and upper protocol layer. The goal of the group was to create a standard that could 

guarantee Quality of Service (QOS) for time critical services. The AVB standard has 

since then attracted interest not only from the consumer market but also from the 

automotive industry [27] [28] [31] [33] [35]. 

There are three specifications that Ethernet AVB is based on 

 IEEE 802.1as, provides precise timing and accurate synchronization for streams. 

 IEEE 802.1Qat, stream reservation protocol that provides support for the 

receiving node applications to request a reserved bandwidth path in the network 

from sending node to receiving node. 

 IEEE 802.1Qav, rules that will ensure the network latency for a stream in the 

network and guarantees latency for highest traffic class. 

There is also a fourth standard IEE 802.1BA that has the purpose of specifying default 

configurations and profiles to aid manufacturers creating AVB compatible products. 

 

3.3.1 Supported Traffic 

Ethernet AVB supports rate constrained traffic using the IEEE 802.1Qat and IEEE 

802.1Qav standards. Real-time traffic is divided into class A and class B. Best effort 

traffic is also supported. Ethernet AVB uses the IEEE 802.1Q standard that adds VLAN 

tagging support. It includes a 3-bit priority field that indicate frame priority with values 

ranging from 0(best effort) to 7(highest). 

 

3.3.2 IEEE 802.1as Time Synchronization 

To synchronize an AVB stream in the network the devices will from time to time 

exchange timing information. The information allows the devices to synchronize their 

time base reference clocks with each other. It is derived from the IEEE 1588 standard 

and uses UDP over IP and the time base reference is derived from a high frequency 8 

kHz clock source [27].  

Devices in the network that supports AVB create a timing domain and within the 

domain a single device is selected Grand Master Clock. The master timing signal is sent 
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to all slaves in the domain so all the slaves are synchronized with the master clock. The 

Grand Master Clock can automatically be selected or manually configured. When AVB 

capable devices are physically connected to the switch they will start to send capability 

messages to each other. If they support IEEE 802.1as they will start to exchange 

synchronization messages with each other. 

The Precision Time Protocol (PTP) from the IEEE 1588 standard is used to synchronize 

the master and slaves. The synchronization is a two step process and begins with the 

master sending Offset messages to the slaves. The offset message contains the master 

clock time and the offset time is calculated and corrected by the slave [30] as depicted 

by Figure 26. 

 

 

At time tm = 100 the master sends an offset message to the slave (the slave clock at this 

time instant is 140). When the message is received at ts = 142 the slave calculates an 

offset based on the master time stamp carried in the message. The local clock on the 

slave is adjusted. When the next offset message is sent the slave can determine that the 

offset is zero. The master and slave clocks are now offset synchronized but not globally 

synchronized because the propagation delay is currently unknown. 

The second step calculates the line delay and synchronizes the clocks globally. The 

algorithm is of request response type. It begins with the slave sending a delay request. 

When the request is received the master immediately responds. When the response 

message is received by the slave it calculates the line delay by subtracting the current 

time stamp with the previous and divides by two. The assumption here is that the line 

delay is evenly distributed between master and slave. 
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Figure 26. Two step PTP Master Slave Synchronization 
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3.3.3 IEEE 802.1Qat Stream Reservation 

Streams in Ethernet AVB are priority tagged and devices send frames based on the 

priority class and the QOS parameters when the stream is created. Talkers declare 

streams by specifying the stream class. There are two types of stream classes, A and B. 

The bandwidth needed for the stream is specified with a maximum packet size and the 

interval to send packets. Reservation of network bandwidth and buffers are done with a 

protocol called Stream Reservation Protocol (SRP). It is conducted in two steps called 

registration and reservation. A listener (devices receiving a stream) sends a registration 

message to the talker. The registration message is propagated through the switches to 

the talker and each switch that is passed makes an entry in its database so it can forward 

the reservation message sent by the talker to the listener. If there are other listeners 

interested in the same stream it might not have to propagate the registration message the 

talker. If the registration message passes a switch that is already forwarding the stream 

the switch can duplicate the stream out of the port connected to the new listener [27]. 

 

 

 

 

 

 

 

 

 

 

In the example seen in Figure 27 Listener 1 sends a registration message through two 

switches that forwards the message to the talker. The talker sends a reservation message 

that reserves bandwidth between the talker and listener. Listener 2 sends a registration 

message to the first switch. The switch is already forwarding the stream that listener 2 is 

interested in so it duplicates the stream and sends it out of the port listener 2 is 

connected to. The assumption here is that there is enough bandwidth available to be 

reserved. If one of the switches along the way does not have enough bandwidth a 

negative response is generated and sent to the listener that requested the stream. 

For the listeners to know what streams are available all the talkers advertise their stream 

by broadcasting the stream information. At each switch the worst case latency is 

recalculated so the listeners can use it to do accurate synchronization. 
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Figure 27. Talker and listener registration and reservation 
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3.3.4 IEEE 802.1Qav Queuing and Forwarding 

The stream classes A and B are mapped to two priority levels defined in IEEE 802.1Q. 

The traffic shaping defined in the IEEE 802.Qav uses credit based shaping. The traffic 

shaping creates a low upper limit on the size of the output buffers for the switches. This 

creates a bounded delay for the streams in an AVB network and eliminates network 

congestion [29]. 

Credit based shaping is similar to a token bucket algorithm. Credits increases as long as 

there are packets in the queue and when packets are transmitted credits are withdrawn. 

If the queue becomes empty the credits are cleared. The rate at which credits are 

incremented is based on the amount of bandwidth that is allocated to a specific stream.  

The credit based shaping is implemented for the AVB streams and for each traffic class 

queue. For each stream queue the credit flow is based on the configured bandwidth 

limit. The rate of credit flow for each traffic class is based on the sum of all bandwidth 

limits for each stream associated with the specific traffic class. 

 

3.3.5 AVB Switch 

Best effort traffic uses lower priority levels than the traffic class A and B. In the 

specification it is recommended to only reserve up to 75 % of the bandwidth available 

to the AVB traffic. In each switch the queuing and forwarding specification segregates 

traffic into time critical and non-time critical packets. The time cycle is based on the 8 

kHz clock source specified in IEE 802.1as. Traffic is scheduled on a 125 µs cycle for 

class A traffic and 250 µs for class B traffic. Time critical packets are transmitted first 

followed by the non-critical packets as long as it is not going to delay the start of the 

next time slot as depicted in Figure 28. 

 

 

Time critical Time critical 

Best effort 

Scheduling the best effort traffic 

immediately after the first time critical 

traffic would delay the start of next 

cycle 

250 500 750 1000 

(µs) 

Figure 28. Packet pacing in Ethernet AVB switch 

Incoming 

traffic 
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3.3.6 AVB Frame Format 

Ethernet AVB frame is encapsulated in a standard 802.3 Ethernet frame with priority 

tagging. The priority tagging is used to distinguish between class A, class B and best 

effort traffic. The payload contains the AVB header which consists of the stream id and 

other implementation specific parameters that depends on the type of stream data. A 32-

bit time stamp is included before the AVB stream data as depicted in Figure 29. 

 

 

 

 

 

 

 

3.3.7 Current Status 

Toyota, NEC Engineering and Broadcom have released two papers [30] and [33]. It 

includes an example of a converged backbone using Ethernet AVB. They highlight 

automotive requirements for the backbone which includes  

 

 Fail-safe systems and quick recovery 

 Acknowledgement and retry 

 Ultra-low latency for critical control applications 

 

It is suggested that for lower class data developers can use TCP/IP above the AVB 

protocol layer for acknowledgement and retry. If TCP/IP is too costly they suggest 

using a simple confirmation procedure. The receiver node returns an acknowledge 

frame for each frame sent from the sender node. It is applicable to protocols whose 

messages fit in a single Ethernet frame due to no frame reordering or reassembly. 

Automotive systems shown in [33] propose the use of a higher layer protocol IEEE 

1722 that takes advantage of the features of AVB. It is currently necessary to define 

frames for acknowledgement and retry and for encapsulating packets from other 

communication buses such as CAN. As of today there are some signs of a start to 

automotive support in IEEE 1722 for a CAN and FlexRay gateway protocol [8] (See 

[32] for more information about IEEE 1722). 

Header Data CRC 

Stream 

ID 

Time 

stamp 

AVB stream data 

4 46-1500 18 

(bytes) 4 8 34-1488 

Figure 29. AVB frame format 
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An article published in June 2011 [36] describes a 360-degree view system with 

Ethernet. BMW together with Freescale produced a microcontroller that is used as a 

gateway in a 360-degree camera system. The microcontroller has partial support for the 

Ethernet AVB standard. 

 

3.4 Summary of Analyzed Protocols 

The three analyzed protocols can be categorized into two domains 

 

 Time-Triggered Communication 

 Rate constrained Communication 

 

Rate constrained communication is supported by all of the solutions (AFDX, 

TTEthernet and Ethernet AVB). The traffic shaping in Ethernet AVB is not based on a 

periodic shaper but a credit based shaper. 

TTEthernet advantage is that it supports time triggered, rate constrained and best effort 

traffic. The time triggered communication allows fast control loops with minimal 

latency and jitter because time triggered messages are sent over the network at 

predefined times. A disadvantage with the time triggered communication is that it is less 

flexible if changes are to be made to the nodes. If a node changes when messages are 

sent the global time schedule uploaded to the switch needs to be changed. TTEthernet 

does not specify a specific header for the time triggered traffic because it is sent in 

special messages called protocol control frames. As a result you have less overhead for 

time triggered traffic compared to the rate constrained AFDX protocol that uses IP and 

UDP as headers.  

A disadvantage for TTEthernet is that it requires a custom switch to support the time 

triggered communication model and is currently only available from TTTech but it is 

currently as of 2011 undergoing standardization and will be known as a SAE 6802. 

When the standardization is finalized it is most likely that more manufacturers will 

produce TTEthernet compliant switches and nodes. Future x-by-wire applications may 

require high sampling rates above one KHz and strict deterministic behavior and for 

such applications the time triggered solution is a good choice. TTEthernet has been 

compared to FlexRay and the outcome was that it is a suitable replacement for an in-

vehicle network [24]. 

Both TTEthernet and AFDX support dual redundancy. The fault tolerant suggestion for 

Ethernet AVB is a rapid spanning tree protocol which is more complex than using two 
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of everything. The latest suggestion for automotive adaptations for Ethernet AVB is to 

use faster timers that can detected broken links and do recovery in less than 70 ms [30]. 

The AFDX rate constrained communication guarantees an upper bound on the 

transmission latency. Bandwidth is predefined for the messages sent by all applications 

but in comparison to time triggered communication it is not sent on a synchronized time 

base. Rate constrained communication could be used as a high bandwidth Ethernet 

backbone carrying message from sub buses such as CAN, LIN et cetera.  

AFDX supports the rate constrained communication model and it is possible to do 

evaluation and experiments using a low cost managed switch because it exploits the 

MAC destination address in standard Ethernet as a way to route messages. Both AFDX 

and TTEthernet are statically configured at design time and that is an advantage when it 

is used as an in vehicle Ethernet backbone as they are normally closed systems. A 

comparison between CAN, AFDX and FlexRay for ABS systems showed that AFDX 

achieved identical performance compared to a FlexRay solution [19]. 

Ethernet AVB is developed by IEEE and has a potentially large customer base. It is 

primarily marketed to the audio and video consumer/industry market however the 

automotive industry has shown interest in the standard. The rate constrained model in 

Ethernet AVB requires support in all switches along the route to support the dynamic 

requests of streams and reserve bandwidth. Each switch knows about the streams that 

flow through the switch. The request for a stream from a listener does not need to 

propagate all the way to the sender if the stream is already transmitted through a switch 

along the route. That might not be needed for an Ethernet backbone but can be 

beneficial for an end user entertainment system.  

Currently a subset of the AVB standard has seen use in a BMW camera system utilizing 

the IEEE 802.1as which is used as a way to accurately synchronize the clocks [36]. 

The AFDX rate constrained traffic model is the most suitable protocol for Scania 

adaptation if a low cost prototype should be implemented. Support for the virtual link 

routing is possible with a smart switch. 

The development process at Scania uses an iterative approach and would benefit from 

adding new messages without large changes in the configuration. In that sense Ethernet 

AVB would be the most suitable protocol due to the support of dynamically allocating 

streams. On the other hand both Ethernet AVB and TTEthernet require special switch 

support. If time triggered communication is wanted in the future a switch based on the 

TTEthernet technology is easily deployed because it already supports the AFDX 

standard. If care is taken at design time by allocating enough virtual links the AFDX 

protocol can support introduction of new messages without large changes in the 

configuration. 
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4 Design and Implementation 

This chapter suggests an Ethernet backbone structure and describes a design and 

implementation of a network stack using the rate constrained AFDX protocol standard. 

 

4.1 Suggested Ethernet Backbone 

The suggested network architecture uses an Ethernet backbone to offload the CAN 

buses. The CAN buses with high bus load is divided into sub buses and connected to the 

high bandwidth Ethernet backbone as depicted in Figure 30.  

 

 

New applications requiring high bandwidth is connected to the switch. It is also possible 

to communicate with ECU’s on the lower bandwidth CAN buses through the Ethernet 

gateways. 

 

 

 

Figure 30. Suggested Ethernet backbone 
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4.2 The Software Stack 

The design and implementation is not assumed to be used in any sort of critical system 

but merely as a demonstration how J1939 messages can be transported over a rate 

constrained Ethernet backbone model. The design is based on the documentation for the 

AFDX protocol and it implements a subset of the protocol. Supported are the periodic 

scheduler and the concept of virtual links as a way to partition the available bandwidth 

in the cable. 

The communication ports implemented are queuing ports. A transmitter using a queuing 

port appends new messages in FIFO order and messages are transmitted at the time 

instant the virtual link is scheduled. The receiver retrieves messages from the queue. 

The implementation creates correct UDP/IP packets and calculates the checksum but 

does not support the packet segmentation and reassembly. If an application tries to write 

a message that is bigger than the configured virtual link Lmax parameter the message 

will be truncated. 

 

4.3 Platform 

The user mode software stack currently builds on Windows, and Linux (Ubuntu and 

Embedded Linux). It is developed in C++ using standard C/C++ libraries. It should be 

easy to port to all platforms that support C/C++.  

 

4.4 Tools and Libraries 

The software has been developed primarily in Ubuntu (kernel version 2.6.38-8) using a 

simple text editor. The Ubuntu Linux distribution ran inside a virtual machine on top of 

a Windows XP 32 bit host. 

The frames created differ from standard Ethernet packets because the destination MAC-

address is used to identify virtual links. Therefore data link layer access is needed. A 

network library that supports data link access has been used to develop the software 

stack. The network library is called libpcap [37]. The software stack uses POSIX 

threads for multithreading and more information about pthreads can be found at [38]. 

The motive using Linux as development platform was because it was intended to try 

and run the experiments using existent hardware (PowerPC architecture running an 

Embedded Linux distribution). During the development of the software stack it was 

detected that the embedded Linux distribution had been compiled without raw socket 

support and was configured in half duplex mode. Without raw socket support the 
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software stack cannot access the data link layer to create the specific frames that is used 

in the protocol.  

A decision was made to port the stack to Windows using the Windows port of libpcap 

called winpcap [39]. A port of pthreads for windows [40] was used to replace POSIX 

threads. On Windows the Microsoft Visual C++ Studio 2010 Express development 

environment was used. Later a custom build for the embedded platform was produced 

but due to lack of time it was decided to run the experiments using the windows port. 

 

4.5 Design 

A simplified UML diagram shows the design of the software stack as depicted in Figure 

31. 

 

Figure 31. UML diagram of the software stack 

The application class is used to send and receive messages from the network stack.  It 

has a reference to a configuration class that holds the current transmit and receive ports 
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in the system. It is possible for the applications to send and receive using blocking or 

asynchronous I/O. In blocking mode the sendMessage() method returns after the 

scheduler has dispatched the message. In asynchronous mode it returns immediately 

after putting the message in the message queue. In blocking mode the receiveMessage() 

method blocks until the underlying virtual link has received a message intended for the 

particular receive port. It is also possible to specify a timeout value. In asynchronous 

mode it polls the receive port if a new message has been received and returns 

immediately. The applications run as separate threads. 

The Configuration class has the responsibility to parse the specified configuration file at 

system startup. The configuration file contains a list of the virtual links, transmit and 

receive ports and how they are connected to each other. The parseConfigFile() method 

takes a filename as argument and parses the file. The application class can then use the 

Configuration class to retrieve the transmit and receive ports using getRxPorts() and 

getTxPorts() methods. 

The ComTxPort class represents a transmit port in the AFDX standard. It has a message 

queue that holds the message awaiting transmission by the scheduler. Since the message 

queue is used by both the applications in the system and by the scheduler access to the 

queue is protected by a mutex. The condition variable is used by the underlying virtual 

link to signal when message is transmitted by the scheduler. It is only signaled if the call 

to the sendMessage() method uses blocking mode. The ComTxPort has an UDP source 

and destination port number that is mapped to the UDP protocol source and destination 

port number when transmitting the message. 

ComRxPort represents a receive port in the AFDX standard. The buffer is configured to 

hold a specific number of messages. The mutex is used to protect access to the buffer 

since it is used by the applications receiving messages from the receive port and the 

underlying virtual link that writes new messages to the buffer. The condition variable is 

used to signal the receive port when the virtual link has written a new message to the 

buffer. It is only signaled if the application using the receive port has made the call to 

receiveMessage() in blocking mode. The freshness value indicates when the last 

message in the buffer was received. 

The VirtualLink class implements the concept of a virtual link according to the AFDX 

standard. The two most important parameters are called BAG and Lmax. BAG regulate 

how often the dequeFrame() method will be called by the scheduler. Lmax regulate the 

maximum packet size that a single message can occupy. The two parameters together 

restrict the maximum bandwidth used by the virtual link. The virtual link removes 

messages from each connected transmit port in round robin order. If the current 

scheduled transmit port is empty the virtual link moves to the first non empty transmit 

port. If they are all empty nothing is transmitted. 
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The Schedule class contains the schedule that has timeslots divided into 128 different 

slots. The schedule uses 128 timeslots since the AFDX standard defines the range of 

BAG values as a power of two ranging from 1 to 128 ms. Virtual links are inserted into 

the schedule based on the BAG value for each link. The scheduler optimizes the 

schedule by adjusting the phase of virtual links with the same BAG value. For example 

if two virtual links with the same BAG value of 2 ms are to be scheduled the first link is 

inserted into slot 0, 2, 4, 6 et cetera. The second link is adjusted in phase to reduce 

serialization jitter of the two links by inserting it in time slot 1, 3,5,7 et cetera. It is 

possible for each timeslot to have multiple virtual links and if they do the virtual links is 

serialized at the cost of jitter.  

The Scheduler uses the schedule and runs in a separate thread. The Scheduler uses the 

method retreiveTimeSlot() from the Schedule class to retrieve the current timeslot to be 

scheduled. It then calls the method DequeFrame on each virtual link in the timeslot. If a 

message is retrieved it is sent to the network interface. It is possible for the scheduler to 

yield until the next schedule time. The accuracy and granularity of the yield time 

depends on the underlying operative system. The NetworkInterface class uses pcap to 

send packets to the network card. See Appendix B for sequence diagrams. 

 

4.6 Transmission of J1939 Messages 

The messages periods used in the experiments with the implemented prototype was 

selected from a database. The database contains messages sent over the red CAN bus. A 

subset of the messages was selected with varying periods. The real message names of 

M1-M20 are concealed but they are real J1939 messages used by Scania today. Two 

experiments were performed with the prototype. 

The first experiment adds J1939 message frequencies and dimensions the virtual links 

to carry messages based on their total frequency. The second experiment uses a single 

virtual link and encapsulates multiple messages in a single Ethernet packet.  

The application layer has no support to do synchronized sends with the virtual link 

scheduler. As a result special support to assemble multiple J1939 messages into a single 

Ethernet packet was therefore added in the stack. The virtual link will retrieve all the 

messages in the transmit queue port and assemble it into an Ethernet packet when the 

virtual link is scheduled. 

The goal is to compare the two experiments how they differ in bandwidth utilization, 

overhead for each Ethernet message and worst case delay. J1939 messages were 

modeled with timers interrupting at the frequency of each message. The messages were 

injected into the transmitting node and time stamped. At the receiving node the 

measured results are written to a file. 
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4.6.1 First Experiment Using Frequency Accumulation 

The first experiment calculates virtual link BAG values by adding message frequencies. 

See section 3.1.3 for an example. VL1 with a BAG value of 2 ms is calculated from 

adding the frequencies for three messages with a period of 10 ms, VL2 from the four 

messages with a period of 20 ms, VL3 from the the three messages with a period of 50 

ms and VL4 from the messages with a period of 100, 1000 and 5000 ms. The CAN 

message structure used has a 4 byte identifier and 8 bytes of data. The 4 byte identifier 

is able to hold the 29 bit identifier. Consequently the Ethernet packet size is 

                                                         

          

Since the minimum Ethernet packet size is 64 bytes, 5 bytes of padding is used. The 

message to virtual link mapping is depicted in Figure 32. 

 

Figure 32. Message set mapping in first experiment 

 

A queuing port is used for each message so VL1 has three ports connected to it, VL2 

four, VL3 three and VL4 ten. The configuration file the sending node uses in the 

experiment is depicted in Figure 33.  
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Figure 33. Configuration file for the first experiment 

 

4.6.2 Second Experiment Using Message Encapsulation 

The second experiment packs multiple messages into a single Ethernet packet. When 

packing multiple J1939 messages into one Ethernet packet the Ethernet payload field 

need at least a header to identify the number of J1939 messages that is sent in the 

Ethernet packet. It is assumed each message has a fixed size. The BAG value for each 

virtual link carrying multiple messages in a single packet needs to be smaller than the 

message with the smallest period in the set.  

If all the messages in the set are sent on a single virtual link the BAG value needs to be 

set to less than 10 ms (the smallest period for a single message in the set). The Lmax 

parameter is set to the worst case that could happen when all the messages have been 

received between two scheduled transmissions of the virtual link. The allocated 

bandwidth for the virtual link has to be large enough to hold all the messages in a single 

Ethernet packet. A small header is used to indicate the number of messages packed in 

the Ethernet packet. The J1939 message structure is 12 bytes and the selected message 

set contains 20 messages so the Lmax parameter is set to 
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The message to virtual link mapping is depicted in Figure 34. 

 

Figure 34. Message set mapping in second experiment 

 

The configuration file used by the sending node in the second experiment is depicted in 

Figure 35. A single port is connected to the virtual link. 

 

 

Figure 35. Configuration file for the second experiment 
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5 Results of Experiments 

This chapter presents the results from the experiments. 

 

For time measurement the query performance counter was used. The experiments were 

performed on two machines with a dual core 3 GHz processor running Windows XP on 

a 100 Mbit/s network. The timers on the two nodes were synchronized each second with 

the master node transmitting the master clock to the client node. After the reception of 

the clock value the client node measures the transmission delay by sending a request to 

the master. The master immediately replies and when the client node receives the reply 

it calculates the delay by estimating the delay to be equally distributed between the 

sending of the request and receiving the reply. At most for all the experiments a 

maximum clock drift of 100 µs was recorded. This is apparent in the results for the 

measured minimum delay which in some cases are measured as low as 0 ms which is 

impossible. See Appendix A for a table with delay values for each message for both of 

the experiments. 

The first experiment configured with four virtual links and a transmit port for each 

message was run three times and each run lasted for 20 seconds. A total of 35883 

packets sent and all messages were received earlier than their deadlines (equal to the 

message period). The results are depicted in Figure 36 using a stacked histogram 

showing the frequency distribution of packets for each virtual link with a bin size of 2 

milliseconds. 

 

Figure 36. Results for the first experiment 



44 

 

The second experiment configured with a single link and a single port was run three 

times and each run lasted for 20 seconds. A total of 35882 packets sent and all messages 

were received earlier than their deadlines. The results are depicted in Figure 37 using a 

stacked histogram showing the frequency distribution of packets for each virtual link 

with a bin size of 2 milliseconds. 

 

Figure 37 Results for the second experiment 

 

The total amount of bandwidth reserved for all the virtual links in the first experiment is  

    

 
         

    

 
         

    

  
         

    

 
        

             

For a 100 Mbit/s network the reserved bandwidth in a single segment is 

     

     
 

     

        
                

The frame overhead for each message in the first experiment is 
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 Most of the packets in VL1 is sent and received within 2 milliseconds. The distribution 

of packets for VL2, VL3 and VL4 are in general equal. 

The total amount of bandwidth reserved for the virtual link in the second experiment is 

    

 
                 

For a 100 Mbit/s network the reserved bandwidth in a single segment is  

     

     
 

     

        
               

For the second experiment the average number of messages encapsulated in a single 

Ethernet transmission was also measured. The result showed that on average five 

messages were transmitted. For a virtual link with the Lmax parameter set to 288 bytes 

only 

                    

of the virtual link capacity is used. 

The second experiment has almost the same overhead (one byte difference due to the 

extra one byte header) for the worst case if a single message is transmitted. On average 

when approximately 5 packets are sent the overhead is 

  

   
            

In the best case if all 20 messages are pending transmission 

  

   
             

Since all the messages are sent in a single virtual link the worst case latencies are 

similar for all messages.  

Even if all messages for the two experiments were received before their deadline 

(deadline equal to message period) it should be noted that the experiments was run on a 

non real-time operating system. The virtual link scheduler in the experiments tries to 

use as little processor time as possible and yields the remaining time until the next 

scheduling time. Due to limitations in sleep granularity and context switches some 

messages carried by VL1 and VL2 in the first experiment exceed the theoretical 

maximum delay which is 
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Furthermore, the first experiment shows that it is difficult to produce a perfect schedule 

when accumulating multiple message frequencies to be carried by a single virtual link. 

There is reserve capacity in the first experiment and it is possible to send more 

messages in each virtual link without changing the scheduling periods. It would easier if 

the messages carried by each virtual link had a frequency that fits the power of two 

virtual link scheduling periods. 

In the second experiment all messages fit in a single Ethernet message. A few packets 

violate the maximum scheduling period of 8 milliseconds. A way to verify this was 

made by measuring the time from message injection by an application to message 

dispatch by the virtual link scheduler. It showed that in all cases when the maximum 

delay was recorded for the messages, the dispatch time for the virtual link scheduler had 

been delayed due to thread preemption.  

It is only a few packets that exceeded the theoretical maximum message delay and the 

average delay for all messages in both experiments is below the theoretical maximum 

delay for all virtual links 
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5.1 Summary 

The first experiment has higher frame overhead due to the relatively large UDP/IP 

header and only sending one J1939 message for each Ethernet packet. The most 

important difference lies in the complexity and how much the allocated bandwidth 

grows when adding messages to the virtual link.  

To visualize the main difference between the two experiments picture a single virtual 

link with a scheduling period of 16 milliseconds and a maximum frame size of 64 bytes. 

Messages with a period of 16 milliseconds are added to the virtual link. With a single 

message to be transmitted the allocated bandwidth for both experiments would be equal. 

If an additional message is added, the scheduling period with frequency accumulation 

needs to be changed to 8 milliseconds for the virtual link, effectively doubling the 

allocated bandwidth. With multiple messages in a single packet only the maximum 

frame size needs to be changed to fit two messages. As depicted in Figure 38 the 

complexity for frequency accumulation resembles a staircase. The multiple messages 

have slow linear growth. 

 

 

Figure 38. Comparison between frequency accumulation and multiple messages 

 

Consequently the second experiment is more efficient carrying J1939 messages even 

though it has low average utilization. The first experiment is less efficient due to the 

complexity difference and large overhead.  
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6 Discussion 

This chapter discusses how to provide support for incremental updates, software and 

message compatibility, reducing overhead and improvements that can be made to the 

prototype developed. 

 

6.1 Incremental Updates 

Incremental updates are possible with the proposed protocol if care is taken at design 

and planning stage. By allocating reserve capacity in the virtual links it is possible to 

add new messages sent from an ECU without updating the virtual link schedules in the 

transmitting/receiving ECU’s and switch. 

 

6.2 Software and Message Compatibility 

One way of providing backward compatibility for messages carried over an Ethernet 

solution is to use some form of serialization format. Protocol buffers are Google’s 

approach to provide a serialization format and it is described in a similar way as XML. 

The messages are defined in .proto files. 

 

message ether_message{ 

 required int32 id = 1; 

 optional int32 a = 2; 

 optional int32 b = 3; 

 optional string description = 4; 

} 

 

Messages have one or more uniquely numbered fields, each field has a name and a 

value type.  There are three types of fields required, optional and repeated. A reader 

expects the required field to be in the message otherwise it is deemed incomplete. The 

optional field is not required and the reader parses the message correctly even if it is not 

supplied. The repeated field can be repeated any number of times including zero. The 

.proto file is compiled to C++ code and can be used by application developers in the 

following way 
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ether_message msg; 

msg.set_id(1234); 

msg.set_a(5); 

msg.set_b(6); 

msg.set_description(”ether_message”); 

msg.serializeToStream(&output); 

 

To use it with the rate constrained software stack the serialized stream is then sent to a 

transmit port. If an existing message type no longer meets the requirement it can be 

extended by adding additional fields. Code created with the old format is still compa-

tible with the new format apart from that it is ignoring the additional fields in the 

message. It is therefore possible for an old device running applications using the old 

format to communicate with newer applications using the new format. As a result old 

software in ECU’s are able to communicate using the old message format with newer 

ECU’s using the new message format. For more information about Google protocol 

buffers see [41]. 

 

6.3 Reducing Overhead 

The AFDX protocol uses a UDP/IP header but a simple closed backbone with a single 

switch could use a smaller header which reduces the amount of overhead for each 

packet. The header may possibly be small enough so the network stack can differentiate 

between messages intended for different ports. Implementing such a design could be 

done using the MAC destination address and the priority field of an 802.1Q Ethernet 

frame to distinguish between time critical and best effort traffic in similar way as 

TTEthernet and Ethernet AVB. The time critical traffic could then use the smaller 

header. Another alternative is to use larger messages by converging functionality and 

sending more information in larger packets. 

 

6.4 Improvements to the Prototype 

An implementation of the sampling port type needs to be done. The scheduler for the 

virtual link can be used to trigger callbacks for the application layer. Applications 

would be scheduled at the same time instant as the virtual link and could send messages 

synchronized with the regulator.  

The virtual link scheduler in the experiments tries to use as little processor time as 

possible and yields the remaining time until the next scheduling time. The Windows XP 

scheduler puts the network scheduler thread in a wait state when it yields. Due to 
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limitations in the sleep granularity and context switches the time it takes for the thread 

to wake up is nondeterministic. To get better results from the network scheduler the 

protocol stack should be implemented in a real-time operating system. 

  



51 

 

7 Conclusion 

CAN is reaching its limits when it comes to bandwidth. In the future more bandwidth is 

needed and new features require more bandwidth. Ethernet is an interesting technology 

to use as a way to solve the problem. 

First three Ethernet real-time protocols were studied. The three studied protocols were 

AFDX, TTEthernet and Ethernet AVB.  

Thereafter, a prototype was designed and implemented. The prototype was based on the 

AFDX protocol because it is the most suitable protocol for Scania adaptation if a low 

cost prototype should be implemented. Support for the virtual link routing is possible 

with a standard smart switch. The other protocols require dedicated switch hardware. 

The prototype was evaluated in two experiments. Both experiments transmit J1939 

messages over a simulated Ethernet backbone. The first experiment uses frequency 

accumulation to parameterize the virtual links. The second experiment tries to pack 

multiple J1939 messages in a single Ethernet packet. 

The results of the experiments were that the second experiment is the most efficient. 

The first experiment has higher frame overhead due to the relatively large UDP/IP 

header and only sending one J1939 message for every Ethernet packet. The most 

important difference lies in the complexity and how much the allocated bandwidth 

grows when adding messages to the virtual link. 

The development process at Scania uses an iterative approach and would benefit from 

adding new messages without large changes in the configuration. In that sense Ethernet 

AVB would be the most suitable protocol due to the support of dynamically allocating 

streams. On the other hand both Ethernet AVB and TTEthernet require special switch 

support. If time triggered communication is wanted in the future a switch based on the 

TTEthernet technology is easily deployed because it already supports the AFDX 

standard. If care is taken at design time by allocating enough virtual links the AFDX 

protocol can support introduction of new messages without large changes in the 

configuration. 

To improve performance the stack should be implemented using a real-time operating 

system and put in the driver layer. Moving the virtual link scheduler to a separate 

hardware implementation is even better although that is obviously a cost concern. It has 

been observed that in the current CAN network it is difficult to get an accurate 

estimation of the bus load. The benefit of a rate constrained Ethernet model is that the 

total amount of allocated capacity can be calculated offline. Another benefit is that if an 

application tries to push more data than allocated for by the virtual link it will not 

degrade the whole network but it is isolated to the virtual link.  
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Ethernet in a real-time vehicle network is a viable solution. With full duplex there is no 

access arbitration to the medium. The prototype implemented in this degree project uses 

a rate constrained traffic model and removes the remaining problem with uncertain 

buffer contention. As a result the prototype can be used a starting point for a future 

Ethernet backbone. 
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8 Future Work 

This chapter presents the future work and an idea how the protocol and the Ethernet 

solution could be introduced in accordance with the release process used at Scania. 

 

As this report is not covering  the electrical layer and how the cabling should be done 

the future work should be focused on investigating cabling, electromagnetic 

compatibility, contacts and finding a suitable switch that support a programmable 

MAC-address table and preferably support for 802.1Q to be able to prioritize between 

different traffic classes. 

The release process used at Scania presents a number of difficulties when introducing 

the proposed Ethernet solution. A change from a single coordinator to an Ethernet 

backbone overnight in a single release is not a feasible approach. Gradually 

implementing the Ethernet solution in accordance with the current release process is one 

feasible approach. A starting point could be the Coordinator that is used to connect the 

different CAN buses today. 

In the first step an Ethernet port is added to the Coordinator. Support for the proposed 

Ethernet protocol is then implemented in the Coordinator.  It is then possible in later 

stages to create new CAN or other low bandwidth buses using a gateway between the 

switch as depicted in Figure 39. Other high bandwidth applications are also possible to 

connect to the switch. An idea for the future is to investigate the feasibility and its 

implications to gradually move existing ECU’s from the current red, green or yellow 

buses to the newly created gateways. 
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Figure 39. Using Coordinator as a starting point 
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Appendix A Delay tables 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Message 
Period (ms) Minimum  

delay(s) 

Maximum  

delay(s) 

Average     

delay(s) 

Packets sent 

M1 10 0.000015 0.009399 0.003727 5582 

M2 10 0.000015 0.009384 0.001444 5584 

M3 10 0.000816 0.008430 0.002460 5584 

M4 20 0.000015 0.017632 0.005636 2927 

M5 20 0.000015 0.017639 0.007820 2929 

M6 20 0.000015 0.017639 0.007589 2932 

M7 20 0.000023 0.019250 0.008016 2935 

M8 50 0.000046 0.016754 0.007473 1186 

M9 50 0.010834 0.032875 0.022813 1187 

M10 50 0.002975 0.048004 0.038737 1189 

M11 100 0.000053 0.074348 0.022688 601 

M12 100 0.000046 0.077301 0.018578 603 

M13 100 0.000046 0.064606 0.018296 605 

M14 100 0.004913 0.072418 0.025909 607 

M15 100 0.000053 0.055809 0.023944 609 

M16 100 0.005997 0.063622 0.030900 610 

M17 1000 0.000031 0.055809 0.014037 63 

M18 1000 0.003937 0.063522 0.021552 66 

M19 1000 0.000053 0.070374 0.025651 69 

M20 5000 0.006981 0.078239 0.040363 15 

Results from first experiment 
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Message 

Period (ms) Minimum 

delay(s) 

Maximum 

delay(s) 

Average    

delay(s) 

Packets sent 

M1 10 0.000008 0.009865 0.004453 5582 

M2 10 0.000000 0.009865 0.004361 5584 

M3 10 0.000000 0.009865 0.004485 5587 

M4 20 0.000031 0.009850 0.004428 2928 

M5 20 0.000015 0.009865 0.004468 2930 

M6 20 0.000015 0.009857 0.004459 2932 

M7 20 0.000038 0.009857 0.004526 2934 

M8 50 0.000969 0.008896 0.004069 1185 

M9 50 0.000038 0.009850 0.004684 1186 

M10 50 0.000015 0.009827 0.003909 1188 

M11 100 0.000053 0.009819 0.004542 600 

M12 100 0.000023 0.009811 0.004452 602 

M13 100 0.000053 0.009827 0.004509 605 

M14 100 0.000046 0.009811 0.004420 607 

M15 100 0.000053 0.009834 0.004412 609 

M16 100 0.000008 0.009819 0.004416 611 

M17 1000 0.000969 0.008766 0.005510 63 

M18 1000 0.000977 0.008774 0.005844 66 

M19 1000 0.000977 0.008774 0.005572 68 

M20 5000 0.002968 0.006927 0.005643 15 

 

 

 

 

 

 

 

 

 

 

 

Results from second experiment 
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Appendix B Sequence of 

Execution 

On the application side of execution the following occurs. At system startup the 

configuration file is parsed and the virtual links, transmit and receive ports are created. 

The configuration file is parsed and contains a list of virtual links with parameters for 

BAG, Lmax, receive and transmit ports. The software stack starts the traffic scheduler if 

the system has transmit ports in the parsed configuration file. The software launches all 

the defined applications for the end system. It is possible for the applications themselves 

to use the defined transmit and receive ports in asynchronous or blocking mode. 

 

 

Sequence diagram for the Applications 
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On the Scheduler side of execution the following occurs. Virtual links are inserted into 

the schedule based on the BAG value for each link. The scheduler runs in a separate 

thread and retrieves the current scheduled timeslot. If there are multiple virtual links in 

the current timeslot they are serialized. It is possible for each virtual link to have 

multiple transmitting ports. The transmit ports are scheduled in round robin order. The 

scheduler retrieves the packet and sends it to the network interface. 

 

 

Sequence diagram for the scheduler 
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Appendix C List of 

Abbreviations 

 

802.1Q Network standard that supports virtual LANs on an Ethernet 

network. Adds 4 bytes to the Ethernet header. 

802.1as Network standard for timing and synchronization support. 

Derived from IEEE 1588. 

802.1Qat  Network standard for stream reservation. 

802.1Qav  Network standard for traffic shaping audio/video streams. 

ACK  Acknowledge 

AFDX  Avionics Full-Duplex Switched Ethernet 

ARINC Aeronautical Radio, Incorporated. A major provider of 

transport communication and systems engineering solutions. 

ARINC 429 ARINC standard for a 2-wire serial bus with one sender and 

many listeners. 

ARINC 664 Part 7 ARINC standard that describes AFDX. 

BAG  Bandwidth Allocation Gap 

CAN  Controller Area Network 

COO Coordinator. A gateway node in Scanias in-vehicle CAN 

network. 

CRC  Cyclic Redundancy Check 

CSMA/CD  Carrier sense multiple access with collision detection 

DARPA  Defense Research Projects Agency 

ECU  Electronic Control Unit 

EOF  End of Frame 

Ethernet AVB Ethernet Audio Video Bridging 

FlexRay An automotive network communications protocol. Designed 

to be faster and more reliable than CAN. Supports time 

triggered communication. 
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IEEE  Institute of Electrical and Electronics Engineers 

IP  Internet Protocol 

IPG  Inter Packet Gap 

LAN  Local Area Network 

LMAX  Maximum frame size supported by a virtual link in AFDX 

MAC  Media Access Control 

MAN  Metropolitan Area Network 

PDU  Protocol data unit. 

SFD  Start of Frame Delimiter 

PGN Parameter Group Number, A PGN identifies a message’s 

function and  associated data in the J1939 standard. 

SOF  Start of Frame 

PRE  Preamble 

TTEthernet  Time Triggered Ethernet 

UDP  User Datagram Protocol 

VL Virtual Link in the AFDX protocol. Identifies a unique route 

from a sender to one or many receivers. 

VLAN  Virtual LAN 
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