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Preface

Vehicle dynamics should be a branch of Dynamics, but, in my opinion, too often it
does not look like that. Dynamics is based on terse concepts and rigorous reasoning,
whereas the typical approach to vehicle dynamics is much more intuitive. Qualita-
tive reasoning and intuition are certainly very valuable, but they should be supported
and confirmed by scientific and quantitative results.

I understand that vehicle dynamics is, perhaps, the most popular branch of Dy-
namics. Almost everybody has been involved in discussions about some aspects of
the dynamical behavior of a vehicle (how to brake, how to negotiate a bend at high
speed, which tires give best performance, etc.). At this level, we cannot expect a
deep knowledge of the dynamical behavior of a vehicle.

But there are people who could greatly benefit from mastering vehicle dynam-
ics. From having clear concepts in mind. From having a deep understanding of the
main phenomena. This book is intended for those people who want to build their
knowledge on sound explanations, who believe equations are the best way to for-
mulate and, hopefully, solve problems. Of course along with physical reasoning and
intuition.

I have been constantly alert not to give anything for granted. This attitude has led
to criticize some classical concepts, such as self-aligning torque, roll axis, understeer
gradient, handling diagram. I hope that even very experienced people will find the
book interesting. At the same time, less experienced readers should find the matter
explained in a way easy to absorb, yet profound. Quickly, I wish, they will feel not
so less experienced any more.

Acknowledgments Over the last few years I have had interactions and discussions
with several engineers from Ferrari Formula 1. The problems they constantly have
to face have been among the motivations for writing this book. Moreover, their deep
knowledge of vehicle dynamics has been a source of inspiration. I would like to
express my gratitude to Maurizio Bocchi, Giacomo Tortora, Carlo Miano, Marco
Fainello, Tito Amato (presently at Mercedes), and Gabriele Pieraccini (presently at
Bosch).

I wish to thank Dallara Automobili and, in particular, Andrea Toso, Alessandro
Moroni, and Luca Bergianti. They have helped me in many ways.
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Danilo Tonani, director of FormulaGuidaSicura, for having given me the opportu-
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Chapter 1
Introduction

Vehicle dynamics is a fascinating subject, but it can also be very frustrating without
the tools to truly understand it. We can try to rely on experience, but an objective
knowledge needs a scientific approach. Something grounded on significant math-
ematical models, that is models complex enough to catch the essence of the phe-
nomena under investigation, yet simple enough to be understood by a (well trained)
human being. This is the essence of science, and vehicle dynamics is no excep-
tion.

But the really important point is in the mental attitude we should have in ap-
proaching a problem. We must be skeptical. We must be critical. We must be cre-
ative. Even if something is commonly accepted as obviously true, or if it looks very
reasonable, it may be wrong, either totally or partially wrong. There might be room
for some sort of improvement, for a fresh point of view, for something valuable.

Vehicle dynamics can be set as a truly scientific subject, it actually needs to be
set as such to achieve a deep comprehension of what is going on when, e.g., a race
car negotiates a bend.

When approached with open mind, several classical concepts of vehicle dynam-
ics, like, e.g., the roll axis, the understeer gradient, even the wheelbase, turn out to
be very weak concepts indeed. Concepts often misunderstood, and hence misused.
Concepts that need to be revisited and redefined, and reformulated to achieve an
objective knowledge of vehicle dynamics. Therefore, even experienced people will
probably be surprised by how some topics are addressed and discussed here.

To formulate vehicle dynamics on sound concepts we must rely on clear def-
initions and model formulations, and then on a rigorous mathematical analysis.
We must, indeed, “formulate” the problem at hand by means of mathematical for-
mulæ [4]. There is no way out. Nothing is more practical than a good theory. How-
ever, although we will not refrain from using formulæ, at the same time we will
keep the analysis as simple as possible, trying to explain what each formula tells us.

To help the reader, the Index of almost all mathematical symbols is provided at
the end of this book. We believe an Index is more useful than a Glossary because it
shows in which context each symbol is defined.

M. Guiggiani, The Science of Vehicle Dynamics, DOI 10.1007/978-94-017-8533-4_1,
© Springer Science+Business Media Dordrecht 2014
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2 1 Introduction

Fig. 1.1 Vehicle expected
behavior when negotiating a
curve

Fig. 1.2 Acceptable
behaviors for a road vehicle

1.1 Vehicle Definition

Before embarking into the development of mathematical models, it is perhaps ad-
visable to discuss a little what ultimately is (or should be) a driveable road vehicle.
Since a road is essentially a long, fairly narrow strip, a vehicle must be an object with
a clear heading direction.1 For instance, a shopping kart is not a vehicle since it can
go in any direction. Another common feature of road vehicles is that the driver is
carried on board, thus undergoing the same dynamics (which, again, is not the case
of a shopping kart).

Moreover, roads have curves. Therefore, a vehicle must have the capability to be
driven in a fairly precise way. This basically amounts to controlling simultaneously
the yaw rate and the magnitude and direction of the vehicle speed. To fulfill this task
a car driver can act (at least) on the brake and accelerator pedals and on the steering
wheel. And here it is where vehicle dynamics comes into play, since the outcome of
the driver actions strongly depends on the vehicle dynamic features and state.

An example of proper turning of a road vehicle is something like in Fig. 1.1.
Small deviations from this target behavior, like those shown in Fig. 1.2, may be
tolerated. On the other hand, Fig. 1.3 shows two unacceptable ways to negotiate a
bend.

1Usually, children show to have well understood this concept when they move by hand a small toy
car.
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1.2 Vehicle Basic Scheme 3

Fig. 1.3 Unacceptable
behaviors for a road vehicle

All road vehicles have wheels, in almost all cases equipped with pneumatic tires.
Indeed, also wheels have a clear heading direction. This is why the main way to
steer a vehicle is by turning some (or all) of its wheels.2

To have good directional capability, the wheels in a vehicle are arranged such
that their heading directions almost “agree”, that is they do not conflict too much
with each other. However, tires do work pretty well under small slip angles and, as
will be shown, some amount of “disagreement” is not only tolerated, but may even
be beneficial.

Wheel hubs are connected to the chassis (vehicle body) by means of suspensions.
The number of possible different suspensions is virtually endless. However, suspen-
sion systems can be broadly classified into two main subgroups: dependent and
independent. In a dependent suspension the two wheels of the same axle are rigidly
connected together. In an independent suspension they are not, and each wheel is
connected to the chassis by a linkage with “mainly” one degree of freedom. Indeed,
the linkage has some compliance which, if properly tuned, can enhance the vehicle
behavior.

1.2 Vehicle Basic Scheme

A mathematical model of a vehicle [5] should be simple, yet significant [1, 2]. Of
course, there is not a unique solution. Perhaps, the main point is to state clearly the
assumptions behind each simplification, thus making clear under which conditions
the model can reliably predict the behavior of a real vehicle.

There are assumptions concerning the operating conditions and assumptions re-
garding the physical model of the vehicle.

Concerning the operating conditions, several options can be envisaged:

performance: the vehicle goes straight on a flat road, possibly braking or accelerat-
ing (nonconstant forward speed);

handling: the vehicle makes turns on a flat road, usually with an almost constant
forward speed;

ride: the vehicle goes straight on a bumpy road, with constant forward speed.

2Broadly speaking, wheels location does not matter to the driver. But it matters to engineers.
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4 1 Introduction

Obviously, real conditions are a mixture of all of them.
A significant, yet simple, physical model of a car may have the following fea-

tures:

(1) the vehicle body is a single rigid body;
(2) each wheel hub is connected to the vehicle body by a single degree-of-freedom

linkage (independent suspension);
(3) the steering angle of each (front) wheel is mainly determined by the angular

position δv of the steering wheel, as controlled by the driver;
(4) the mass of the wheels (unsprung mass) is very small if compared to the mass

of the vehicle body (sprung mass);
(5) the wheels have pneumatic tires;
(6) there are springs and dampers (and, maybe, inerters) between the vehicle body

and the suspensions, and, likely, between the two suspensions of the same axle
(anti-roll bar). Front to rear interconnected suspensions are possible, but very
unusual;

(7) there may be aerodynamic devices, like wings, that may significantly affect the
downforce.

The first two assumptions ultimately disregard the elastic compliances of the chassis
and of the suspension linkages, respectively, while the third assumption leaves room
for vehicle models with compliant steering systems.

A vehicle basic scheme is shown in Fig. 1.4, which also serves the purpose of
defining some fundamental geometrical parameters:

(1) the vehicle longitudinal axis x, and hence the vehicle heading direction i;
(2) the height h from the road plane of the center of gravity G of the whole vehicle;
(3) the longitudinal distances a1 and a2 of G from the front and rear axles, respec-

tively;
(4) the lateral position b of G from the axis;
(5) the wheelbase l = a1 + a2;
(6) the front and rear tracks t1 and t2;
(7) the geometry of the linkages of the front and rear suspensions;
(8) the position of the steering axis for each wheel.

All these distances are positive, except possibly b, which is usually very small and
hence typically set equal to zero, like in Fig. 1.4.

It must be remarked that whenever during the vehicle motion there are suspension
deflections, several of these geometrical parameters may undergo small changes.
Therefore, it is common practice to take their reference value under the so called
static conditions, which means with the vehicle moving straight on a flat road at
constant speed, or, equivalently if there are no wings, when the vehicle is motionless
on a horizontal plane.

Accordingly, the study of the performance and handling of vehicles is greatly
simplified under the hypothesis of small suspension deflections, much like assuming
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1.2 Vehicle Basic Scheme 5

Fig. 1.4 Vehicle basic scheme

Fig. 1.5 Example of a
double wishbone front
suspension [6]
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6 1 Introduction

very stiff springs (which is often the case for race cars).3 Yet, suspensions cannot
be completely disregarded, at least not in vehicles with four or more wheels. This
aspect will be thoroughly discussed.

The vehicle shown in Fig. 1.4 has a swing arm rear suspension and a double
wishbone front suspension. Perhaps, about the worst and the best kind of indepen-
dent suspensions [3]. They were selected to help explaining some concepts, and
should not be considered as an example of a good vehicle design. An example of a
double wishbone front suspension is shown in Fig. 1.5.

References
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Chapter 2
Mechanics of the Wheel with Tire

All road vehicles have wheels and almost all of them have wheels with pneumatic
tires. Wheels have been around for many centuries, but only with the invention,
and enhancement, of the pneumatic tire it has been possible to conceive fast and
comfortable road vehicles [3].

The main features of any tire are its flexibility and low mass, which allow for
the contact with the road to be maintained even on uneven surfaces. Moreover, the
rubber ensures high grip. These features arise from the highly composite structure
of tires: a carcass of flexible, yet almost inextensible cords encased in a matrix of
soft rubber, all inflated with air.1 Provided the (flexible) tire is properly inflated, it
can exchange along the bead relevant actions with the (rigid) rim. Traction, braking,
steering and load support are the net result.

It should be appreciated that the effect of air pressure is to increase the structural
stiffness of the tire, not to support directly the rim. How a tire carries a vertical load
Fz if properly inflated is better explained in Fig. 2.1. In the lower part, the sidewalls
bend and, thanks to the air pressure pa , they apply more vertical forces Fa in the
bead area than in the upper part. The overall effect on the rim is a vertical load Fz.
The higher the air pressure pa , the lower the sidewall bending.

The contact patch, or footprint, of the tire is the area of the tread in contact
with the road. This is the area that transmits forces between the tire and the road via
pressure and friction. To truly understand some of the peculiarities of tire mechanics
it is necessary to get some insights on what happens in the contact patch.

Handling of road vehicles is strongly affected by the mechanical behavior of the
wheels with tire, that is by the relationship between the kinematics of the rigid rim
and the force exerted by the road. This chapter is indeed devoted to the analysis of
experimental tests. The development of simple, yet significant, tire models is done
in Chap. 10.

1Only in competitions it is worthwhile to employ special (and secret) gas mixtures instead of air.
The use of nitrogen, as often recommended, is in fact completely equivalent to air, except for the
cost.

M. Guiggiani, The Science of Vehicle Dynamics, DOI 10.1007/978-94-017-8533-4_2,
© Springer Science+Business Media Dordrecht 2014
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8 2 Mechanics of the Wheel with Tire

Fig. 2.1 How a tire carries a vertical load if properly inflated

2.1 The Tire as a Vehicle Component

A wheel with tire is barely a wheel, in the sense that it behaves quite differently from
a rigid wheel.2 This is a key point to really understand the mechanics of wheels with
tires. For instance, a rigid wheel touches the (flat) road at one point C, whereas a
tire has a fairly large contact patch. Pure rolling of a rigid wheel is a clear kinematic
concept [12], but, without further discussion, it is not obvious whether an analogous
concept is even meaningful for a tire. Therefore, we have to be careful in stating as
clearly as possible the concepts needed to study the mechanics of wheels with tire.

Moreover, the analysis of tire mechanics will be developed with no direct refer-
ence to the dynamics of the vehicle. This may sound a bit odd, but it is not. The goal
here is to describe the relationship between the motion and position of the rim and
the force exchanged with the road through the contact patch:

rim kinematics ⇐⇒ force and moment

2A rigid wheel is essentially an axisymmetric convex rigid surface. The typical rigid wheel is a
toroid.
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2.2 Rim Position and Motion 9

Once this description has been obtained and understood, then it can be employed
as one of the fundamental components in the development of suitable models for
vehicle dynamics, but this is the subject of other chapters.

Three basic components play an active role in tire mechanics:

(1) the rim, which is assumed to be a rigid body;
(2) the flexible carcass of the inflated tire;
(3) the contact patch between the tire and the road.

2.2 Rim Position and Motion

For simplicity, the road is assumed to have a hard and flat surface, like a geometric
plane. This is a good model for any road with high quality asphalt paving, since the
texture of the road surface is not relevant for the definition of the rim kinematics
(while it highly affects grip [8]).

The rim R is assumed to be a rigid body, and hence, in principle, it has six de-
grees of freedom. However, only two degrees of freedom (instead of six) are really
relevant for the rim position because the road is flat and the wheel rim is axisym-
metrical.

Let Q be a point on the rim axis yc (Fig. 2.2). Typically, although not strictly
necessary, a sort of midpoint is taken. The position of the rim with respect to the
flat road depends only on the height h of Q and on the camber angle γ (i.e., the
inclination) of the rim axis yc. More precisely, h is the distance of Q from the road
plane and γ is the angle between the rim axis and the road plane.

Now, we can address how to describe the rim velocity field.
The rim, being a rigid body, has a well defined angular velocity �. Therefore,

the velocity of any point P of the (space moving with the) rim is given by the well
known equation [7, p. 124]

VP = VQ + � × QP (2.1)

where VQ is the velocity of Q and QP is the vector connecting Q to P . The three
components of VQ and the three components of � are, e.g., the six parameters which
completely determine the rim velocity field.

A moving reference system S = (x, y, z;O) is depicted in Fig. 2.2. It is defined
in a fairly intuitive way. The y-axis is the intersection between a vertical plane con-
taining the rim axis yc and the road plane. The x-axis is given by the intersection
of the road plane with a plane containing Q and normal to yc. Axes x and y define
the origin O as a point on the road. The z-axis is vertical, that is perpendicular to
the road, with the positive direction upward.3 The unit vectors marking the positive
directions are (i, j,k), as shown in Fig. 2.2.

3S is the system recommended by ISO (see, e.g., [14, Appendix 1]).
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10 2 Mechanics of the Wheel with Tire

Fig. 2.2 Wheel with tire: nomenclature and reference system

An observation is in order here. The directions (i, j,k) have a physical meaning,
in the sense that they clearly mark some of the peculiar features of the rim with
respect to the road. As a matter of fact, k is perpendicular to the road, i is perpendic-
ular to both k and the rim axis jc, j follows accordingly. However, the position of the
Cartesian axes (x, y, z) is arbitrary, since there is no physical reason to select a point
as the origin O . This is an aspect whose implications are often underestimated.

The moving reference system S = (x, y, z;O) allows a more precise description
of the rim kinematics. On the other hand, a reference system Sf = (xf , yf , zf ;Of )

fixed to the road is not very useful in this context.
Let jc be the direction of the rim axis yc

jc = cosγ j + sinγ k (2.2)

where the camber angle γ of Fig. 2.2 is positive. The total rim angular velocity �

is

� = γ̇ i + θ̇ jc + ζ̇k

= γ̇ i + ωcjc + ωzk

= γ̇ i + ωc cosγ j + (ωc sinγ + ωz)k

= Ωx i + Ωyj + Ωzk (2.3)

where γ̇ is the time derivative of the camber angle, ωc = θ̇ is the angular velocity of
the rim about its spindle axis, and ωz = ζ̇ is the yaw rate, that is the angular velocity
of the reference system S.
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2.2 Rim Position and Motion 11

It is worth noting that there are two distinct contributions to the spin velocity Ωzk
of the rim, a camber contribution and a turn contribution4

Ωz = ωc sinγ + ωz (2.4)

Therefore, the same value of Ωz can be the result of different operating conditions
for the tire, depending on the amount of the camber angle γ and of the yaw rate ωz.

By definition, the position vector OQ is (Fig. 2.2)

OQ = h(− tanγ j + k) (2.5)

This expression can be differentiated with respect to time to obtain

VQ − VO = ḣ(− tanγ j + k) + h

(
ωz tanγ i − γ̇

cos2 γ
j
)

= hωz tanγ i −
(

ḣ tanγ + h
γ̇

cos2 γ

)
j + ḣk (2.6)

since dj/dt = −ωzi. Even in steady-state conditions, that is ḣ = γ̇ = 0, we have
VQ = VO +hωz tanγ i and hence the two velocities are not exactly the same, unless
also γ = 0. The camber angle γ is usually very small in cars, but may be quite large
in motorcycles.

The velocity of point O has, in general, longitudinal and lateral components

Vo = VO = Vox i + Voy j (2.7)

As already stated, the selection of point O is arbitrary, although quite reasonable.
Therefore, the velocities Vox and Voy do not have much of physical meaning. A dif-
ferent choice for the point O would provide different values for the very same mo-
tion. However, a “wheel” is expected to have longitudinal velocities much higher
than lateral ones, as will be discussed with reference to Fig. 10.23.

Summing up, the position of the rigid rim R with respect to the flat road is
completely determined by the following six degrees of freedom:

h(t) distance of point Q from the road;
γ (t) camber angle;
θ(t) rotation of the rim about its axis yc;
xf (t) first coordinate of point O w.r.t. Sf ;
yf (t) second coordinate of point O w.r.t. Sf ;
ζ(t) yaw angle of the rim.

However, owing to the circular shape of rim and the flatness of the road, the kine-
matics of the rigid rim R is also fully described by the following six functions of
time:

4In the SAE terminology, it is ωcjc that is called spin velocity [4, 11].
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12 2 Mechanics of the Wheel with Tire

Fig. 2.3 Flexibility of the
tire carcass [8]

Fig. 2.4 Structure of a radial
tire [8]

h(t) distance of point Q from the road;
γ (t) camber angle;
ωc(t) angular velocity of the rim about its axis yc;
Vox (t) longitudinal speed of O;
Voy (t) lateral speed of O;
Ωz(t) spin velocity of the rim.

The rim is in steady-state conditions if all these six quantities are constant in time.
However, this is not sufficient for the wheel with tire to be in a stationary state. The
flexible carcass and tire treads could still be under transient conditions.

2.3 Carcass Features

The tire carcass C is a highly composite and complex structure. Here we look at
the tire as a vehicle component [13] and therefore it suffices to say that the in-
flated carcass, with its flexible sidewalls, is moderately compliant in all directions
(Fig. 2.3). The external belt is also flexible, but quite inextensible (Fig. 2.4). For
instance, its circumferential length is not very much affected by the vertical load
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2.4 Contact Patch 13

acting on the tire. The belt is covered with tread blocks whose elastic deforma-
tion and grip features highly affect the mechanical behavior of the wheel with tire
[8–10].

Basically, the carcass can be seen as a nonlinear elastic structure with small hys-
teresis due to rate-dependent energy losses. It is assumed here that the carcass and
the belt have negligible inertia, in the sense that the inertial effects are small in com-
parison with other causes of deformation. This is quite correct if the road is flat and
the wheel motion is not “too fast”.

2.4 Contact Patch

Tires are made from rubber, that is elastomeric materials to which they owe a large
part of their grip capacity [17]. Grip implies contact between two surfaces: one is
the tire surface and the other is the road surface.

The contact patch (or footprint) P is the region where the tire is in contact with
the road surface. In Fig. 2.2 the contact patch is schematically shown as a single
region. However, most tires have a tread pattern, with lugs and voids, and hence the
contact patch is the union of many small regions (Fig. 2.5). It should be emphasized
that the shape and size of the contact patch, and also its position with respect to the
reference system, depend on the tire operating conditions.

Grip depends, among other things, on the type of road surface, its roughness, and
whether it is wet or not. More precisely, grip comes basically from road roughness
effects and molecular adhesion.

Road roughness effects, also known as indentation, require small bumps measur-
ing a few microns to a few millimeters (Fig. 2.6), which dig into the surface of the
rubber. On the other hand, molecular adhesion necessitates direct contact between
the rubber and the road surface, i.e. the road must be dry.

Two main features of road surface geometry must be examined and assessed
when considering tire grip, as shown in Fig. 2.6:

Macroroughness: this is the name given to the road surface texture when the dis-
tance between two consecutive rough spots is between 100 microns and 10 mil-
limeters. This degree of roughness contributes to indentation, and to the drainage
and storage of water. The load bearing surface, which depends on road macro-
roughness, must also be considered since it determines local pressures in the
contact patch.

Microroughness: this is the name given to the road surface texture when the dis-
tance between two consecutive rough spots is between 1 and 100 microns. It is
this degree of roughness which is mainly responsible for tire grip via the road
roughness effects. Microroughness is related to the surface roughness of the ag-
gregates and sands used in the composition of the road surface.
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14 2 Mechanics of the Wheel with Tire

Fig. 2.5 Typical contact
patch (if α = γ = 0) with
tread pattern

Fig. 2.6 Road roughness
description [8]

2.5 Footprint Force

As well known (see, e.g., [18]), any set of forces or distributed load is statically
equivalent to a force-couple system at a given (arbitrary) point O . Therefore, re-
gardless of the degree of roughness of the road, the distributed normal and tangential
loads in the footprint yield a resultant force F and a resultant couple vector MO

F = Fx i + Fyj + Fzk

MO = Mx i + Myj + Mzk
(2.8)

The resultant couple MO is simply the moment about the point O , but any other
point could be selected. Therefore it has no particular physical meaning. However,
if O is somewhere within the contact patch, the magnitude |MO | is expected to be
quite “small” for the wheel with tire to resemble a rigid wheel.

Traditionally, the components of F and MO have the following names:

Fx longitudinal force;
Fy lateral force;
Fz vertical load or normal force;
Mx overturning moment;
My rolling resistance moment;
Mz self-aligning torque, called vertical moment here.

The names of the force components simply reaffirm their direction with respect to
the chosen reference system S and hence with respect to the rim. On the other hand,
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2.5 Footprint Force 15

the names of the moment components, which would suggest a physical interpre-
tation, are all quite questionable. Their values depend on the arbitrarily selected
point O , and hence are arbitrary by definition.

For instance, let us discuss the name “self-aligning torque” of Mz, with reference
to Fig. 2.2 and Eq. (2.10). The typical explanation for the name is that “Mz produces
a restoring moment on the tire to realign the direction of travel with the direction
of heading”, which, more precisely, means that Mz and the slip angle α are both
clockwise or both counterclockwise. But the sign and magnitude of Mz depend on
the position of O , which could be anywhere! The selected origin O has nothing
special, not at all. Therefore, the very same physical phenomenon, like in Fig. 2.2,
may be described with O anywhere and hence by any value of Mz. The inescapable
conclusion is that the name “self-aligning torque” is totally meaningless and even
misleading.5 For these reasons, here we prefer to call Mz the vertical moment. Sim-
ilar considerations apply to Mx .

It is a classical result that any set of forces and couples in space, like (F,MO), is
statically equivalent to a unique wrench [18]. However, in tire mechanics it is more
convenient, although not mandatory, to represent the force-couple system (F,MO)

by two properly located perpendicular forces (Fig. 2.2): a vertical force Fp = Fzk
having the line of action passing through the point with coordinates (ex, ey,0) such
that

Mx = Fzey and My = −Fzex (2.9)

and a tangential force Ft = Fx i + Fyj lying in the xy-plane and having the line of
action with distance |dt | from O (properly located according to the sign of dt )

Mz =
√

F 2
x + F 2

y dt = |Ft |dt (2.10)

We remark that the two “displaced” forces Fp and Ft (Fig. 2.2) are completely
equivalent to F and MO .

These forces are transferred to the rigid rim (apart for a small fraction due to
the inertia and weight of the tire carcass and belt). Indeed, the equivalence of the
distributed loads in the contact patch to concentrated forces and/or couples makes
sense precisely because the rim is a rigid body.

For instance, the torque T = T jc that the distributed loads in the contact patch,
and hence the force-couple system (F,MO), exert with respect to the wheel axis yc

is given by

T = T jc = ((QO × F + MO) · jc
)
jc

=
(

−Fx

h

cosγ
+ My cosγ + Mz sinγ

)
jc (2.11)

5What is relevant in vehicle dynamics is the moment of (F,MO) with respect to the steering axis
of the wheel. But this is another story.
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16 2 Mechanics of the Wheel with Tire

where (2.2) and (2.5) were employed. This expression is particularly simple be-
cause the yc-axis intersects the z-axis and is perpendicular to the x-axis (Fig. 2.2).
If γ = 0, Eq. (2.11) becomes

T = −Fxh + My = −Fxh − Fzex (2.12)

2.5.1 Perfectly Flat Road Surface

To perform some further mathematical investigations, it is necessary to discard com-
pletely the road roughness (Fig. 2.6) and to assume the road surface in the contact
patch to be perfectly flat, exactly like a geometric plane (Fig. 2.2).6 This is a fairly
unrealistic assumption whose implications should not be underestimated.

Owing to the assumed flatness of the contact patch P , we have that the pressure
p(x, y)k, by definition normal to the surface, is always vertical and hence forms
a parallel distributed load. Moreover, the flatness of P implies that the tangential
stress t(x, y) = tx i + tyj forms a planar distributed load. Parallel and planar dis-
tributed loads share the common feature that the resultant force and the resultant
couple vector are perpendicular to each other, and therefore each force-couple sys-
tem at O can be further reduced to a single resultant force applied along the line
of action (in general not passing through O). A few formulae should clarify the
matter.

The resultant force Fp and couple MO
p of the distributed pressure p(x, y) are

given by

Fp = Fzk = k
∫∫

P
p(x, y)dxdy

MO
p = Mx i + Myj =

∫∫
P

(xi + yj) × kp(x, y)dxdy

(2.13)

where

Mx =
∫∫

P
yp(x, y)dxdy = Fzey, My = −

∫∫
P

xp(x, y)dxdy = −Fzex

(2.14)
As expected, Fp and MO

p are perpendicular. As shown in (2.14), the force-couple
resultant (Fp,MO

p ) can be reduced to a single force Fp having a vertical line of
action passing through the point with coordinates (ex, ey,0), as shown in Fig. 2.2.

6More precisely, it is necessary to have a mathematical description of the shape of the road surface
in the contact patch. The plane just happens to be the simplest.
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2.6 Tire Global Mechanical Behavior 17

The resultant tangential force Ft and couple MO
t of the distributed tangential

stress t(x, y) = tx i + tyj are given by

Ft = Fx i + Fyj =
∫∫

P

(
tx(x, y)i + ty(x, y)j

)
dxdy

MO
t = Mzk =

∫∫
P

(xi + yj) × (tx i + tyj)dxdy

= k
∫∫

P

(
xty(x, y) − ytx(x, t)

)
dxdy = kdt

√
F 2

x + F 2
y

(2.15)

where

Fx =
∫∫

P
tx(x, y)dxdy, Fy =

∫∫
P

ty(x, y)dxdy (2.16)

Also in this case Ft and MO
t are perpendicular. As shown in (2.15), the force-couple

resultant (Ft ,MO
t ) can be reduced to a tangential force Ft , lying in the xy-plane and

having a line of action with distance |dt | from O (properly located according to the
sign of dt ), as shown in Fig. 2.2.

Obviously the more general (2.8) still holds

F = Fp + Ft

MO = MO
p + MO

t

(2.17)

2.6 Tire Global Mechanical Behavior

The analysis developed so far provides the tools for quite a precise description of the
global mechanical behavior of a real wheel with tire interacting with a road. More
precisely, as already stated at p. 8, we are interested in the relationship between the
motion and position of the rim and the force exchanged with the road in the contact
patch:

rim kinematics ⇐⇒ force and moment

We assume as given, and constant in time, both the wheel with tire (including its
inflating pressure and temperature field) and the road type (including its roughness).
Therefore we assume all grip features as given and constant in time.

2.6.1 Tire Transient Behavior

Knowing the mechanical behavior means knowing the relationships between the six
kinematical parameters (h, γ,ωc,Vox ,Voy ,Ωz) that fully characterize the position
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18 2 Mechanics of the Wheel with Tire

and the motion of the rigid rim and the force-couple resultant (F,MO). We recall
that the inertial effects of the carcass are assumed to be negligible.

Owing mostly to the flexibility of the tire structure, these relationships are of
differential type, that is there exist differential equations

f(Ḟ,F, h, γ,ωc,Vox ,Voy ,Ωz) = 0

g(ṀO,MO,h, γ,ωc,Vox ,Voy ,Ωz) = 0
(2.18)

In general, there might be the need of differential equations of higher order.
The identification of these differential equations by means solely of experimental

tests is a formidable task. The point here is not to find them, but to appreciate that
the transient behavior of a wheel with tire does indeed obey differential equations,
maybe like in (2.18). Which also implies that initial conditions have to be included
and the values of (F,MO) at time t depend on the time history.

Later on, suitable models will be developed that allow for a partial identification
of (2.18) to be attempted.

2.6.2 Tire Steady-State Behavior

If all features are constant (or, at least, varying slowly) in time, the overall system
is in steady-state conditions. Mathematically, it means that there exist, instead of
(2.18), the following algebraic functions

F =�F(h, γ,ωc,Vox ,Voy ,Ωz)

MO = �MO(h,γ,ωc,Vox ,Voy ,Ωz)
(2.19)

which relate the rim position and steady-state motion to the force and moment acting
on the tire from the footprint. In other words, given the steady-state kinematics, we
know the (constant in time) forces and couples (but not viceversa).

The algebraic functions in (2.19) are, by definition, the equilibrium states of the
differential equations (2.18)

f(0,�F, h, γ,ωc,Vox ,Voy ,Ωz) = 0

g(0, �MO,h, γ,ωc,Vox ,Voy ,Ωz) = 0
(2.20)

Equations (2.19) can be split according to (2.17)

Fp = Fzk =�Fp(h, γ,ωc,Vox ,Voy ,Ωz)

Ft = Fx i + Fyj =�Ft (h, γ,ωc,Vox ,Voy ,Ωz)

MO
p = Mx i + Myj = �MO

p (h, γ,ωc,Vox ,Voy ,Ωz)

MO
t = Mzk = �MO

t (h, γ,ωc,Vox ,Voy ,Ωz)

(2.21)
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2.6 Tire Global Mechanical Behavior 19

Fig. 2.7 Flat roadway testing machine (Calspan’s Tire Research Facility)

Fig. 2.8 Drum testing
machine [8]

Typical tire tests (like in Figs. 2.7 and 2.8) aim at investigating some aspects of
these functions. Actually, quite often the vertical load Fz takes the place of h as an
independent variable, as discussed in Sect. 2.8. This is common practice, although it
appears to be rather questionable in a neat approach to the analysis of tire mechan-
ics. As already stated, a clearer picture arises if we follow the approach “impose
the whole kinematics of the rim, measure all the forces in the contact patch” [14,
p. 62].
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20 2 Mechanics of the Wheel with Tire

Fig. 2.9 Pure rolling: Fx = 0
and T = Fzex

Fig. 2.10 Free rolling: T = 0
and Fxh = Fzex

2.6.3 Rolling Resistance

As shown schematically in Figs. 2.9 and 2.10, the rolling resistance arises because
the normal pressure p in the leading half of the contact patch is higher than that
in the trailing half. This is mainly caused by the hysteresis in the tire due to the
deflection of the carcass while rolling. The vertical resultant Fzk of the pressure
distribution is offset towards the front of the contact patch.

The main source of energy dissipation is therefore the visco-elasticity of the ma-
terials of which tires are made. Visco-elastic materials lose energy in the form of
heat whenever they are deformed. Deformation-induced energy dissipation is the
cause of about 90 % of rolling resistance [10, 19].
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2.6 Tire Global Mechanical Behavior 21

A number of tire operating conditions affect rolling resistance. The most impor-
tant are load, inflation pressure and temperature. However, as speed increases, tire’s
internal temperature rises, offsetting some of the increased rolling resistance. There-
fore, tire rolling resistance coefficients f are relatively constant on a relatively wide
range of speeds. The values given by tire manufacturers are measured on test drums,
usually at 80 km/h in accordance with ISO measurement standards.

2.6.4 Speed Independence (Almost)

Tire tests suggest that Fp , Ft , MO
p and MO

t are almost speed independent, if ωc

is not too high. Essentially, it means that (2.21) can be replaced by the following
functions of only five variables:

Fp = F̃p

(
h,γ,

Vox

ωc

,
Voy

ωc

,
Ωz

ωc

)

Ft = F̃t

(
h,γ,

Vox

ωc

,
Voy

ωc

,
Ωz

ωc

)

MO
p = M̃O

p

(
h,γ,

Vox

ωc

,
Voy

ωc

,
Ωz

ωc

)

MO
t = M̃O

t

(
h,γ,

Vox

ωc

,
Voy

ωc

,
Ωz

ωc

)

(2.22)

In other words, we assume that the steady-state forces and moments depend on the
geometrical features of the rim motion (i.e., the trajectories), and not on how fast
the motion develops in time. Therefore, we are discarding all inertial effects and any
influence of speed on the phenomena related to grip. Of course, this may not be true
at very high speeds, like in competitions.

2.6.5 Pure Rolling (not Free Rolling)

Pure rolling between two rigid surfaces that are touching at one point is a relevant
topic, e.g., in robot manipulation. An in-depth discussion in the more general frame-
work of contact kinematics can be found for instance in [12, p. 249].

Pure rolling in case of rigid bodies in point contact requires two kinematical
conditions to be fulfilled: no sliding and no mutual spin. However, the two bodies
may exchange tangential forces as far as the friction limit is not exceeded.

These concepts and results have, however, very little relevance, if any, for the
(possible) definition of pure rolling of a wheel with tire. As a matter of fact, there
are no rigid surfaces in contact and the footprint is certainly not a point (Fig. 2.5).
Therefore, even if it is customary to speak of pure rolling of a wheel with tire, it
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22 2 Mechanics of the Wheel with Tire

should be clear that it is a totally different concept than pure rolling between rigid
bodies.

A reasonable definition of pure rolling for a wheel with tire, in steady-state con-
ditions7 and moving on a flat surface, is that the grip actions t have no global effect,
that is

Fx = 0 (2.23)

Fy = 0 (2.24)

Mz = 0 (2.25)

These equations do not imply that the local tangential stresses t in the contact
patch are everywhere equal to zero, but only that their force-couple resultant is zero
(cf. (2.15)). Therefore, the road applies to the wheel only a vertical force Fp = Fzk
and a horizontal moment MO

p = Mx i + Myj.
The goal now is to find the kinematical conditions to be imposed to the rim

to fulfill Eqs. (2.23)–(2.25). In general, the six parameters in Eq. (2.21) should be
considered. However, it is more common to assume that five parameters suffice, like
in (2.22) (as already discussed, it is less general, but simpler)

F̃x

(
h,γ,

Vox

ωc

,
Voy

ωc

,
Ωz

ωc

)
= 0 (2.26)

F̃y

(
h,γ,

Vox

ωc

,
Voy

ωc

,
Ωz

ωc

)
= 0 (2.27)

M̃z

(
h,γ,

Vox

ωc

,
Voy

ωc

,
Ωz

ωc

)
= 0 (2.28)

It is worth noting that pure rolling and free rolling are not the same concept
[14, p. 65]. They provide different ways to balance the rolling resistance moment
My = −Fzex . According to (2.12), we have pure rolling if Fx = 0 (Fig. 2.9), while
free rolling means T = 0 (Fig. 2.10). However, the ratio f = ex/h, called the rolling
resistance coefficient, is typically less than 0.015 for car tires and hence there is not
much quantitative difference between pure and free rolling.

2.6.5.1 Zero Longitudinal Force

First, let us consider Eq. (2.26) alone

F̃x

(
h,γ,

Vox

ωc

,
Voy

ωc

,
Ωz

ωc

)
= 0 (2.29)

7We have basically a steady-state behavior even if the operating conditions do not change
“too fast”.
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2.6 Tire Global Mechanical Behavior 23

which means that Fx = 0 if

Vox

ωc

= fx

(
h,γ,

Voy

ωc

,
Ωz

ωc

)
(2.30)

Under many circumstances there is experimental evidence that the relation above
almost does not depend on Voy and can be recast in the following more explicit
form8

Vox

ωc

= rr (h, γ ) + ωz

ωc

cr(h, γ ) (2.31)

that is

Vox = ωcrr(h, γ ) + ωzcr(h, γ ) (2.32)

This equation strongly suggests to take into account a special point C on the
y-axis such that (Fig. 2.11 and also Fig. 2.2)

OC = cr(h, γ )j (2.33)

where cr is a (short) signed length. Point C would be the point of contact in case of
a rigid wheel. Quite often point O and C have almost the same velocity, although
their distance cr may not be negligible (Fig. 2.11).

Equation (2.31) can be rearranged to get

Vox − ωzcr(h, γ )

ωc

= Vcx

ωc

= rr (h, γ ) (2.34)

This is quite a remarkable result and clarifies the role of point C: the condition
Fx = 0 requires Vcx = ωcrr (h, γ ), regardless of the value of ωz (and also of Voy ).

The function rr (h, γ ) can be seen as a sort of longitudinal pure rolling radius
[19, p. 18], although this name would be really meaningful only for a rigid wheel.
Actually, rolling or sliding do not change the radius of a rigid wheel. As already
stated, a wheel with tire has little to share with a rigid wheel.

The value of rr (h, γ ) for given (h, γ ) can be obtained by means of the usual in-
door testing machines (Figs. 2.7 and 2.8) with ωz = 0. An additional, more difficult,
test with ωz �= 0 is required to obtain also cr(h, γ ) and hence the position of C with
respect to O . Car tires operate at low values of γ and hence have almost constant rr .

In general, we can choose the origin O of the reference system to coincide with
C when γ = 0. Therefore, only for large values of the camber angle, that is for
motorcycle tires, the distance |cr | can reach a few centimeters (Fig. 2.11).

A rough estimate shows that the ratio |ωz/ωc| is typically very small, ranging
from zero (straight running) up to about 0.01. It follows that quite often |(ωz/ωc)cr |

8However, in the brush model, and precisely at p. 294, the effect of the elastic compliance of the
carcass on C is taken into account.
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24 2 Mechanics of the Wheel with Tire

Fig. 2.11 Pure rolling of a
cambered wheel

may be negligible and points O and C have almost the same velocity. However,
particularly in competitions, it could be worthwhile to have a more detailed char-
acterization of the behavior of the tire which takes into account even these minor
aspects.

2.6.5.2 Zero Lateral Force

We can now discuss when the lateral force and the vertical moment are equal to
zero.

According to (2.27), we have that Fy = 0 if

F̃y

(
h,γ,

Vox

ωc

,
Voy

ωc

,
Ωz

ωc

)
= 0 (2.35)

which means

Vcy

ωc

= fy

(
h,γ,

Ωz

ωc

)
(2.36)

where, as suggested by the experimental tests, there is no dependence on the value
of Vcx . For convenience, the lateral velocity Vcy of point C has been employed,
instead of that of point O (Fig. 2.11). Nevertheless, it seems that (2.36) does not
have a simple structure like (2.34).

2.6.5.3 Zero Vertical Moment

Like in (2.28), the vertical moment with respect to O is zero, that is Mz = 0 if

M̃z

(
h,γ,

Vox

ωc

,
Voy

ωc

,
Ωz

ωc

)
= 0 (2.37)
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which provides

Vcy

ωc

= fz

(
h,γ,

Ωz

ωc

)
(2.38)

where, like in (2.36), there is no dependence on the value of Vcx . Also in this case,
it is not possible to be more specific about the structure of this equation.

2.6.5.4 Zero Lateral Force and Vertical Moment

However, the fulfilment of both conditions (2.36) and (2.38) together, that is Fy = 0
and Mz = 0, yields these noteworthy results

Vcy = γ̇ sr (h, γ ) (2.39)

Ωz = ωc sinγ εr(h, γ ) (2.40)

which have a simple structure. To have almost steady-state conditions, it has to be
|γ̇ | � ωc, which is almost always the case. Indeed, in a wheel we do normally
expect |Vcx | � |Vcy | (Fig. 2.11).

The function sr (h, γ ) is a sort of lateral pure rolling radius. It is significant in
large motorcycle tires with toroidal shape (i.e., circular section with almost constant
radius sr ).9

Sometimes εr(h, γ ) is called the camber reduction factor [14, p. 119], [15]. A car
tire may have 0.4 < εr < 0.6, while a motorcycle tire has εr almost equal to 0. The
term sinγ in the r.h.s. of (2.40) simply states that the spin velocity Ωz must be zero
to have pure rolling with γ = 0.

Since Ωz = ωz + ωc sinγ (cf. (2.4)), Eq. (2.40) is equivalent to

ωz

ωc

= − sinγ
(
1 − εr(h, γ )

)
(2.41)

Therefore, to have Fy = 0 and Mz = 0, a cambered wheel with tire must go round
as shown in Fig. 2.12, with a suitable combination of ωc and ωz. Since no condition
is set by (2.41) on the longitudinal velocity Vcx , the radius of the circular path traced
on the road by point C does not matter.

9In a toroidal rigid wheel with maximum radius r0 and lateral radius sr we would have rr =
r0 − sr (1 − cosγ ), cr = − tanγ sr and εr = 0. It follows that ċr �= −γ̇ sr .
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26 2 Mechanics of the Wheel with Tire

Fig. 2.12 Cambered toroidal
wheel moving on a circular
path (courtesy of
M. Gabiccini)

2.7 Tire Slips

Summing up, we have obtained the following kinematic conditions for a wheel with
tire to be in what we have defined pure rolling in (2.23)–(2.25):

Fx = 0 ⇐⇒ Vcx

ωc

= rr (h, γ )

{
Fy = 0

Mz = 0
⇐⇒

⎧⎪⎪⎨
⎪⎪⎩

Vcy

ωc

= γ̇

ωc

sr (h, γ )

Ωz

ωc

= sinγ εr(h, γ )

(2.42)

with OC = cr(h, γ )j (Fig. 2.11).
These equations provide a sort of reference condition for the behavior of a wheel

with tire. Moreover, they are of key relevance for the subsequent definition of tire
slips.

The fulfillment of only the first condition in (2.42) corresponds to longitudinal
pure rolling.

It is worth recalling the main assumptions made (which are not always verified
in real life):

• negligible inertial effects (five instead of six parameters);
• grip features unaffected by speed;
• point C not affected by ωz;
• lateral velocity not affecting Fx = 0;
• longitudinal velocity not affecting Fy = 0 and Mz = 0.

www.cargeek.ir

www.cargeek.ir

http://www.cargeek.ir/
http://www.cargeek.ir/


2.7 Tire Slips 27

2.7.1 Rolling Velocity

Point C and the first two equations in (2.42) provide the basis for the definition of
the so-called rolling velocity Vr (Fig. 2.11)

Vr = ωcrr (h, γ )i + γ̇ sr (h, γ )j

≈ ωcrr i = Vr i (2.43)

Similarly, the third equation in (2.42) leads to the definition of the rolling spin ve-
locity Ωr

Ωr = ωc sinγ εr(h, γ ) (2.44)

Therefore, for a wheel with tire to be in pure rolling it is necessary (according to
(2.42)) that

Vc = Vr and Ωz = Ωr (2.45)

To fulfill these conditions, in the case γ̇ = 0, we must move the wheel on a circular
path centered at A (Figs. 2.12 and 2.11), with radius AC = dr(h, γ )j such that

Vcx = Vr = ωcrr = −ωzdr = ωc sinγ (1 − εr)dr (2.46)

which yields

dr = rr

(1 − εr) sinγ
(2.47)

Typically the rolling radius rr is slightly bigger than the distance of point C from
the rim axis (Fig. 2.11).

It is often stated that “a free-rolling tire with a camber angle would move on
a circular path”. This statement is clearly incorrect. It should be reformulated as
“a tire with camber must be moved on a definite circular path to have pure/free
rolling” (Fig. 2.12). We are not doing dynamics here, but only investigating the
(almost) steady-state behavior of wheels with tire. Therefore, we can say nothing
about what a wheel would do by itself.

2.7.2 Definition of Tire Slips

Let us consider a wheel with tire under real operating conditions, that is not neces-
sarily in pure rolling. The velocity of point C (defined in (2.33)) is called the speed
of travel Vc of the wheel (Fig. 2.11)

Vc = Vcx i + Vcy j = (Vox − ωzcr)i + (Voy + ċr )j (2.48)

The components of Vc also have specific names: Vcx is the forward velocity and Vcy

is the lateral velocity.
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28 2 Mechanics of the Wheel with Tire

To describe any steady-state conditions of a wheel with tire we need at least
two parameters plus three kinematical quantities, as in (2.22). However, it is more
informative to say how “distant” these three quantities are from pure rolling. It is
therefore convenient to define the slip velocity Vs [16]

Vs = Vc − Vr (2.49)

as the difference between the speed of travel and the rolling velocity (2.43). Simi-
larly, it is useful to define what can be called the slip spin velocity Ωsz

Ωsz = Ωz − Ωr

= Ωz − ωc sinγ εr(h, γ )

= (ωz + ωc sinγ ) − ωc sinγ εr

= ωz + ωc sinγ (1 − εr) (2.50)

As already discussed, the complete characterization of pure rolling conditions
essentially means obtaining the following four functions (Fig. 2.11)

cr(h, γ ), rr (h, γ ), sr (h, γ ), εr (h, γ ) (2.51)

Of them, the rolling radius rr is the most important, followed by the camber reduc-
tion factor εr .

Once the pure rolling experimental investigation has been carried out, it is pos-
sible, and even advisable, to perform some simple changes of parameters based on
(2.42), (2.49) and (2.50), which lead to the definition of the well known (wheel with)
tire slips σx , σy and ϕ:

rr (h, γ )σx = Vcx

ωc

− rr (h, γ ) = Vsx

ωc

(2.52)

rr (h, γ )σy = Vcy

ωc

− γ̇

ωc

sr (h, γ ) = Vsy

ωc

(2.53)

rr (h, γ )ϕ = −
(

Ωz

ωc

− sinγ εr(h, γ )

)
= Ωsz

ωc

(2.54)

that is

σx = Vcx − ωcrr

ωcrr
= (Vox − ωzcr(h, γ )) − ωcrr(h, γ )

ωcrr (h, γ )
= Vcx

Vr

− 1 = Vsx

Vr

(2.55)

σy = Vcy − γ̇ sr

ωcrr
= (Voy + ċr (h, γ )) − γ̇ sr (h, γ )

ωcrr (h, γ )
= −Vcx tanα

Vr

= Vsy

Vr

(2.56)

ϕ = −Ωz − ωc sinγ εr

ωcrr
= −ωz + ωc sinγ (1 − εr(h, γ ))

ωcrr (h, γ )
= −Ωsz

Vr

(2.57)

These quantities have the following names [14, 15]:
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2.7 Tire Slips 29

σx theoretical longitudinal slip (σx > 0 means breaking);
σy theoretical lateral slip;
ϕ spin slip.

The first two can be thought of as the components of the (translational) theoretical
slip σ

σ = σx i + σyj = Vc − Vr

Vr

= Vs

Vr

(2.58)

while

ϕ = −Ωz − Ωr

Vr

= −Ωsz

Vr

(2.59)

The longitudinal and lateral slips are dimensionless, whereas the spin slip is not:
[ϕ] = m−1.

Quite often tire tests are conducted with ωz = 0. In that case, the spin slip simply
becomes

ϕ = − sinγ (1 − εr(h, γ ))

rr (h, γ )
(2.60)

On the other hand, if there is only the yaw rate contribution (i.e., γ = 0) it is cus-
tomary to speak of turn slip ϕt

ϕt = −ωz

Vr

(2.61)

Summing up, the pure rolling conditions (2.42) are therefore equivalent to
⎧⎪⎪⎨
⎪⎪⎩

σx = 0

σy = 0

ϕ = 0

(2.62)

which look simpler, but are useless without the availability of rr , cr , sr and εr

in (2.51).
The theoretical slips could be defined with reference to point O instead of C

(Fig. 2.11). In that case, according to (2.48), the correct definitions are

σx = (Vox − ωzcr) − ωcrr

ωcrr
, σy = (Voy + ċr ) − γ̇ sr

ωcrr
(2.63)

Although, as will be shown, the theoretical slip σ is a better way to describe the
tire behavior, it is common practice to use the components of the practical slip κ
instead

κx =
(

ωcrr

Vcx

)
σx = 1

1 + σx

σx = Vcx − ωcrr

Vcx

(2.64)

κy =
(

ωcrr

Vcx

)
σy = 1

1 + σx

σy = − tanα ≈ −α (2.65)
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30 2 Mechanics of the Wheel with Tire

or, conversely

σx = 1

1 − κx

κx = κx

(
1 + κx + O

(
κ2
x

))
(2.66)

σy = 1

1 − κx

κy = κy

(
1 + κx + O

(
κ2
x

))
(2.67)

which also shows that practical and theoretical slips are almost equal only when the
longitudinal slip is small.

The practical slip is only apparently simpler and its use should be discouraged.
The slip ratio κ = −κx is also often employed, along with the slip angle α ≈ −κy .
The approximation is quite good because the slip angle normally does not exceed
15°, that is 0.26 rad.

As discussed in [11, p. 39] and also in [14, p. 597], a number of slip ratio def-
initions are used worldwide [1, 4–6, 19]. A check, particularly of the sign conven-
tions, is therefore advisable. This can be easily done for some typical conditions
like locked wheel (ωc = 0), or spinning wheel (ωc = ∞). For instance, with the
definitions given here we have σx = +∞, κx = 1 and κ = −1 for a traveling locked
wheel.

It is worth remarking that all these slip quantities are just a way to describe the
motion of the rigid wheel rim, not of the tire. Therefore they do not provide any
direct information on the amount of sliding at any point of the contact patch. In this
regard their names may be misleading. More precisely, sliding or adhesion is a local
property of any point in the contact patch, whereas slip is a global property of the
rim motion. They are completely different concepts.

2.7.3 Slip Angle

The slip angle α is defined as the angle between the rolling velocity Vr and the speed
of travel Vc. However, according to (2.48) and (2.43), when γ̇ ≈ 0 it is almost equal
to the angle between i and Vc (Fig. 2.2)10

tanα = −Vcy

Vcx

(2.68)

that is Vcy = −Vcx tanα. For convenience, α is positive when measured clockwise,
that is when it is like in Fig. 2.2.11

Of course, a non-sliding rigid wheel has a slip angle constantly equal to zero. On
the other hand, a tire may very well exhibit slip angles. However, as will be shown,

10Common definitions of the slip angle, like “α being the difference in wheel heading and direc-
tion” are not sufficiently precise.
11All other angles are positive angles if measured counterclockwise, as usually done in mathemat-
ical writing.
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2.8 Grip Forces and Tire Slips 31

Fig. 2.13 Slip angle α as a
function of σx and σy

a wheel with tire can exchange with the road very high longitudinal and lateral
forces still with small slip angles (as shown in the important Fig. 10.23). This is one
of the reasons that makes a wheel with tire behave quite close to a wheel, indeed.

More precisely, (2.68) can be rewritten as

tanα = − σy

1 + σx

= −σy

σx

(
σ

σ +
√

1 + (σy/σx)2

)
(2.69)

which means that the slip angle is in the range ±10 ◦ if σ < 0.2, as shown in
Fig. 2.13. This is why real tires are built in such a way to provide the best perfor-
mances with values of σ below 0.2, as will also be discussed later on with reference
to Fig. 10.23.

2.8 Grip Forces and Tire Slips

In (2.21) it was suggested that the steady-state global mechanical behavior of a
wheel with tire could be described by means of forces and moments depending on
(h, γ ) to identify the rim position, and on other four kinematical parameters to de-
termine the rim motion. We have shown that, by defining the pure rolling conditions
and the tire slips, it is often possible to obtain a satisfactory description of the global
mechanical behavior by means of only three kinematical parameters (σx, σy,ϕ)

Fx = F̂x(h, γ, σx, σy,ϕ)

Fy = F̂y(h, γ, σx, σy,ϕ)

Mz = M̂z(h, γ, σx, σy,ϕ)

(2.70)

Instead of the vertical height h, it is customary to employ the vertical load Fz as
an input variable. This can be safely done since

h = h(Fz, γ ) (2.71)
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32 2 Mechanics of the Wheel with Tire

Fig. 2.14 Two different operating conditions, but with the same spin slip ϕ

with very little influence by the other parameters (cf. (2.21)). Therefore, the (almost)
steady-state global mechanical behavior of a wheel with tire moving not too fast on
a flat road is conveniently described by the following functions

Fx = Fx(Fz, γ, σx, σy,ϕ)

Fy = Fy(Fz, γ, σx, σy,ϕ)

Mz = Mz(Fz, γ, σx, σy,ϕ)

(2.72)

Similarly, (2.51) can be recast as

cr = cr(Fz, γ ), rr = rr (Fz, γ ), sr = sr (Fz, γ ), εr = εr(Fz, γ )

(2.73)
It is often overlooked that Fx , Fy and Mz (Eqs. (2.70) and (2.72)) depend on both

the camber angle γ and the spin slip ϕ. In other words, two operating conditions
with the same ϕ, but obtained with different γ ’s, do not provide the same values of
Fx , Fy and Mz, even if Fz, σx and σy are the same. For instance, the same value
of ϕ can be obtained with no camber γ and positive yaw rate ωz or with positive γ

and no ωz, as shown in Fig. 2.14. The two contact patches are certainly not equal to
each other, and so the forces and moments. The same value of ϕ means that the rim
has the same motion, but not the same position, if γ is different.

We remind that the moment Mz in (2.72) is with respect to a vertical axis passing
through a point O chosen in quite an arbitrary way. Therefore, any attempt to attach
a physical interpretation to Mz must take care of the position selected for O .
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2.9 Tire Testing 33

Unfortunately, it is common practice to employ the following functions, instead
of (2.72)

Fx = F
p
x (Fz, γ, κx,α,ωz)

Fy = F
p
y (Fz, γ, κx,α,ωz)

Mz = M
p
z (Fz, γ, κx,α,ωz)

(2.74)

They are, in principle, equivalent to (2.72). However, using the longitudinal practical
slip κx , the slip angle α and the yaw rate ωz provides a less systematic description
of the tire mechanical behavior. It looks simpler, but ultimately it is not.

2.9 Tire Testing

Tire testing aims at the full identification of the three functions (2.72) or (2.74), that
is of the relationship between the motion and position of the rim and the force and
moment exchanged with the road in the contact patch

rim kinematics ⇐⇒ force and moment

Actually, this goal had already been stated in Sect. 2.1. The difference is that now
we have defined the tire slips, that is a precise set of parameters to control the rim
kinematics.

Indoor tire testing facilities (Figs. 2.7 and 2.8) usually have ωz = 0 in steady-state
tests, and hence lack in generality by imposing a link between γ and ϕ (cf. (2.60)).
However, in most practical applications in road vehicles we have |ωz/ωc| < 0.01
and ωz can indeed be neglected.12

Owing to (2.42) and (2.62), it is meaningful to perform experimental tests for
the so-called pure slip conditions. Basically it means setting γ = ϕ = 0 and either
σy = 0 or σx = 0. In the first case we have pure longitudinal slip and hence only the
longitudinal force Fx = Fx(Fz,0, σx,0,0), which is a very special case of (2.72). In
the second case we have pure lateral slip, which allows for the experimental identifi-
cation of the functions Fy = Fy(Fz,0,0, σy,0) and Mz = Mz(Fz,0,0, σy,0), which
are also very special cases.

Unfortunately, the practical longitudinal slip κx and the slip angle α usually take
the place of σx and σy , respectively [2].

12In a step steer the steering wheel of a car may reach ωz = 20◦/s = 0.35 rad/s. At a forward speed
of 20 m/s, the same wheels have about ωc = 80 rad/s. The contribution of ωz to ϕ is therefore like
a camber angle γ ≈ 0.5◦.
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34 2 Mechanics of the Wheel with Tire

Fig. 2.15 Experimental results: longitudinal force Fx vs practical longitudinal slip κx for four
values of the vertical load Fz

2.9.1 Pure Longitudinal Slip

Figure 2.15 shows the typical behavior of the longitudinal force Fx as a function of
the practical longitudinal slip κx under pure braking conditions, for several values
of the vertical load Fz. More precisely, it is the plot of F

p
x (Fz,0, κx,0,0). It is very

important to note that:

• the maximum absolute value of Fx (i.e., the peak value F max
x ) was obtained for

κx ≈ 0.1 (i.e., σx = 0.11);
• Fx grows less than proportionally with respect to the vertical load.

Both these aspects of tire behavior have great relevance in vehicle dynamics.
Also quite relevant are the values of the longitudinal slip stiffness Cκx , that is

minus the slope of each curve at zero slip

Cκx (Fz) = −∂F
p
x

∂κx

∣∣∣∣
κx=0

(2.75)

and the global longitudinal friction coefficient μx
p , that is the ratio between the peak

value F max
x = max(|Fp

x |) and the corresponding vertical load

μx
p(Fz) = F max

x

Fz

(2.76)

Typically, as shown in Fig. 2.16, it slightly decreases as the vertical load grows.
On the practical side, it is of some interest to observe that

• the experimental values are affected by significant errors;
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2.9 Tire Testing 35

Fig. 2.16 Global
longitudinal friction
coefficient μx

p vs vertical
load Fz

• the tests were carried out till κx ≈ 0.3, to avoid wheel locking and excessive
damage to the tire tread;

• the offset of Fx for κx = 0 is due to the rolling resistance: the wheel was (erro-
neously, but typically) under free rolling conditions, not pure rolling.

2.9.2 Pure Lateral Slip

Figure 2.17 shows the typical behavior of the lateral force Fy as a function of the slip
angle α, for three values of Fz. More precisely, it is the plot of F

p
y (Fz,0,0, α,0). It

is very important to note that

• the maximum absolute value of Fy (i.e., the peak value F max
y ) was obtained for

α ≈ ±8◦ (i.e., tanα = −σy = ±0.14);
• Fy grows less than proportionally with respect to the vertical load.

Also quite relevant are the values of the lateral slip stiffness Cα , also called cor-
nering stiffness

Cα(Fz) = ∂F
p
y

∂α

∣∣∣∣
α=0

(2.77)

that is the slope at the origin. As shown in Fig. 2.18, Cα grows less than propor-
tionally with Fz, and actually it can even decrease at exceedingly high values of the
vertical load.

Another important quantity is the global lateral friction coefficient μ
y
p , that is the

ratio between the peak value F max
y = max(|Fp

y |) and the vertical load

μ
y
p(Fz) = F max

y

Fz

(2.78)
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Fig. 2.17 Experimental results: lateral force Fy vs slip angle α for three values of the vertical
load Fz

Fig. 2.18 Cornering stiffness Cα vs vertical load Fz

As shown in Fig. 2.19, it slightly decreases with Fz.
Comparing Figs. 2.16 and 2.19 we see that similar peak values for Fx and Fy

are obtained for the same vertical load, that is μx
p ≈ μ

y
p . Typically, μx

p is slightly
greater than μ

y
p .

On the practical side it is to note that

• the experimental values are affected by small errors;
• the tests were carried out till α ≈ 12◦, to avoid damaging the tire tread.
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Fig. 2.19 Global lateral
friction coefficient μ

y
p vs

vertical load Fz

Figure 2.20 shows an example of the vertical moment Mz as a function of the
slip angle α, for three values of Fz, that is the plot of M

p
z (Fz,0,0, α,0). The tests

are the same of Fig. 2.17 and similar observations apply.
The behavior of Mz(α) is obviously very much affected by the position of the

z-axis, which should be always clearly stated. Therefore, it is hard to speak of “typi-
cal behavior” of Mz, unless there is general agreement on where to locate the origin
O of the reference system. This aspect could be quite relevant in the comparison
and interpretation of tests performed by different institutions, particularly for mo-
torcycle tires at large camber angles.

Fig. 2.20 Experimental results: vertical moment Mz vs slip angle α for three values of the vertical
load Fz
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2.10 Magic Formula

In vehicle dynamics it is useful to have mathematical functions that fit experimental
tire response curves, like those in Figs. 2.15 and 2.17. Usually, these curves have
similar shapes: they grow less than proportionally, reach a maximum and then tend
to a horizontal asymptote. Among the very many functions that share all these fea-
tures, there is one which is almost exclusively used in vehicle dynamics. It is called
Magic Formula (MF).

Although, over the years, several versions of the Magic Formula have been de-
veloped, they are all based on the following function [14, 16]

y(x) = D sin
{
C arctan

[
Bx − E

(
Bx − arctan(Bx)

)]}
(2.79)

where the four coefficients are usually referred to as

B stiffness factor

C shape factor

D peak value

E curvature factor

(2.80)

Of course, y can be either Fx or Fy , with x being the corresponding practical or
theoretical slip component.

The Magic Formula belongs to the so-called empirical tire models, in the sense
that they mimic some experimental curves without any relation to the physical phe-
nomena involved in tire mechanics.

Let B > 0. It is quite easy to show that

• y(0) = 0 and y′′(0) = 0, since y(x) = −y(−x) like any anti-symmetric function;
• the slope at the origin is given by y′(0) = BCD;
• the value of the horizontal asymptote is ya = limx→+∞ y(x) = D sin(Cπ/2), if

E < 1;
• the function is limited: |y(x)| ≤ D;
• if E < 1 and 1 < C < 2, then the function has a relative maximum ym =

y(xm) = D, with

B(1 − E)xm + E arctan(Bxm) = tan
(
π/(2C)

)
(2.81)

• y′′′(0) < 0, if −(1 + C2/2) < E.

Probably, the most relevant features of an experimental curve like in Fig. 2.17 are
the peak value ym with the corresponding abscissa xm, the asymptotic value ya and
the slope at the origin y′(0). Therefore, to determine the four coefficients a possible
procedure is as follows. First set the peak value

D = ym (2.82)
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then compute the shape factor C employing ya
13

C = 2 − 2

π
arcsin

(
ya

D

)
(2.83)

obtain the stiffness factor B as

B = y′(0)

CD
(2.84)

and, finally, determine the curvature factor E from (2.81)

E = tan(π/(2C)) − Bxm

arctan(Bxm) − Bxm

(2.85)

It is important that ya < ym. If they are equal (or almost equal), an unexpected
plot may result. The Magic Formula usually does a good job at approximating ex-
perimental curves, although, with only four coefficients, the fitting may not be of
uniform quality at all points. This aspect will be addressed in Figs. 10.16 and 10.17.

Quite often, some coefficients are made dependent on the vertical load Fz. Ac-
cording to Figs. 2.16 and 2.19, the global friction coefficient μp decreases almost
linearly with Fz, and hence it is quite reasonable to assume

D = μpFz = (a1Fz + a2)Fz (2.86)

with a1 < 0. To mimic the pattern shown in Fig. 2.18 for the slope at the origin
y′(0), the following formula has been suggested [16]

BCD = y′(0) = a3 sin
(
2 arctan(Fz/a4)

)
(2.87)

Typical values may be a1 = −0.05 kN−1, a2 = 1, a3 = 55 kN/rad, a4 = 4 kN.
An extensive description of the Magic Formula and all its subtleties can be found

in [14].

2.11 Mechanics of Wheels with Tire

The most important aspects of tire behavior can be summarized in a few plots. They
are not the whole story, and the interested reader will find in Chap. 10 many hints
to better understand steady-state and also transient tire behavior. However, these
plots are like a minimum common ground, i.e., something that any vehicle engineer
should always have clear in mind.

Of course, they come from tire testing, either indoor or outdoor. Therefore, these
plots are like the filtered (smoothed) version of the plots presented in Sect. 2.9.
They were drawn employing the Magic Formula with the parameters reported below
Eq. (2.87). The shape factor C was set equal to 1.65 for the plots of Fx , and equal
to 1.3 for the plots of Fy .

13sin(Cπ/2) = sin((2 − C)π/2), since 1 < C < 2.
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Fig. 2.21 Longitudinal force Fx due to pure longitudinal slip σx , for increasing vertical loads Fz .
More precisely Fx = Fx(Fz,0, σx,0,0)

Fig. 2.22 Lateral force Fy due to pure lateral slip σy , for increasing vertical loads Fz . More
precisely Fy = Fy(Fz,0,0, σy,0)

Most tires under pure longitudinal slip behave like in Fig. 2.21. In particular, the
effect of increasing the vertical load Fz is shown. As already mentioned at p. 34, the
growth of Fx is less than proportional, particularly for low values of σx .

Similarly, most tires under pure lateral slip behave like in Fig. 2.22. In particular,
the effect of increasing the vertical load Fz is shown. Again, as already mentioned at
p. 35, the growth of Fy is less than proportional, particularly for low values of σy . It
is precisely this nonlinearity that is, let us say, activated by anti-roll bars to modify
the handling set-up of a car.
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Fig. 2.23 Longitudinal force Fx and lateral force Fy due to combined longitudinal slip σx

and lateral slip σy , for constant vertical load Fz . More precisely Fy = Fy(Fz,0, σx, σy,0) and
Fy = Fy(Fz,0, σx, σy,0)

Fig. 2.24 Longitudinal force Fx and lateral force Fy due to combined longitudinal slip σx

and lateral slip σy , for constant vertical load Fz . More precisely Fy = Fy(Fz,0, σx, σy,0) and
Fy = Fy(Fz,0, σx, σy,0)

The simultaneous application of σx and σy affects the grip forces Fx and Fy the
way shown in Figs. 2.23 and 2.24. Basically, the total force Ft , with components Fx

and Fy , is directed like the slip vector σ , with opposite sign, and has a magnitude
almost dependent on |σ |. These aspects will be thoroughly addressed in Chap. 10,
were the tire brush model will be developed.

Also very relevant is the effect of the camber angle γ , alone or in combination
with σy , on the lateral force Fy , as shown in Fig. 2.25 and, for better clarity, also
in Fig. 2.26. We see that the camber effects are much stronger at low values of σy .
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Fig. 2.25 Lateral force Fy due to lateral slip σy , for different values of the camber angle γ and
constant vertical load Fz . More precisely Fy = Fy(Fz, γ,0, σy,0)

Fig. 2.26 Lateral force Fy due to camber angle γ , for different values of the lateral slip σy and
constant vertical load Fz . More precisely Fy = Fy(Fz, γ,0, σy,0)

However, a right amount of camber can increase the maximum lateral force, thus
improving the car handling performance.

Finally, the effect of the increasing the grip coefficient μ is investigated. We see
in Figs. 2.27 and 2.28 that, as expected, we get higher maximum tangential forces.
However, it should also be noted that changing the grip does not affect the slope of
the curves near the origin.
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Fig. 2.27 Longitudinal force Fx due to pure longitudinal slip σx , for constant vertical load Fz and
increasing grip

Fig. 2.28 Lateral force Fy due to pure lateral slip σy , for constant vertical load Fz and increasing
grip

2.12 Summary

In this chapter we have first pursued the goal of clearly describing the relevant kine-
matics of a wheel with tire, mainly under steady-state conditions. This had led to the
definitions of slips as a measure of the extent to which the wheel with tire departs
from pure rolling conditions. The slip angle has been also defined and discussed. It
has been shown that a wheel with tire resembles indeed a rigid wheel because slip
angles are quite small. Tire experimental tests shows the relationships between the
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kinematics and the forces/couples the tire exchanges with the road. The Magic For-
mula provides a convenient way to represent these functions. Finally, the mechanics
of the wheel with tire has been summarized with the aid of a number of plots.

2.13 List of Some Relevant Concepts

p. 8 a wheel with tire is barely a wheel;
p. 11 there are two distinct contributions to the spin velocity of the rim;
p. 11 in a wheel, longitudinal velocities are expected to be much higher than lateral

ones;
p. 15 the name “self-aligning torque” is meaningless and even misleading;
p. 21 rim kinematics depends on six variables, but often (not always) only five may

be relevant for the tire;
p. 22 a reasonable definition of pure rolling for a wheel with tire is that the grip

actions t have no global effect;
p. 20 pure rolling and free rolling are different concepts;
p. 27 tire slips measure the distance from pure rolling;
p. 30 tire slips do not provide any direct information on the amount of sliding at

any point of the contact patch;
p. 32 tire forces and moments depend on both the camber angle γ and the spin

slip ϕ.
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Chapter 3
Vehicle Model for Handling and Performance

In Chap. 1 vehicle modeling has been approached in general terms. To get quantita-
tive information there is the need to be more specific.

As already stated, in the study of handling and performance the road is assumed
to be perfectly flat (no bumps) and with uniform features. Typically a good paved
road, either dry or wet [1, 5].

The vehicle model fulfills all the assumptions listed at p. 4, with the addition of:

(1) negligible suspension deflections;
(2) negligible tire vertical deformations;
(3) small steering angles (otherwise, steering axes passing through the center of the

corresponding wheel and perpendicular to the road);
(4) perfectly rigid steering system.

Mathematically these additional assumptions amount to having the vehicle always
in its reference configuration, as shown in Fig. 1.4, with the exception of the steering
angles δij of each wheel (δ11 being front-left, δ12 front-right, etc.). More precisely,
a1, a2, l, t1, t2 and h are all constant during the vehicle motion. This is fairly rea-
sonable if the motion is not too harsh, that is if accelerations are not too big and do
not change abruptly.

Typically, the steering axis (pivot line) is something like in Fig. 3.1, with a caster
angle and a kingpin inclination angle. Therefore, there are a trail and a scrub radius.
They are key quantities in the design of the steering system. However, their effects
on the dynamics of the whole vehicle may be neglected in some cases, particularly
with small steering angles and perfectly rigid steering systems (as assumed here).

The net effect of all these hypotheses is that the vehicle body has a planar mo-
tion parallel to the road. This is quite a remarkable fact since it greatly simplifies
the analysis. Moreover, the wheel centers have a fixed position with respect to the
vehicle body. This also helps a lot.

Notwithstanding its (apparent) simplicity, this vehicle model still shows a very
rich and interesting dynamic behavior, and has proven to be a valuable tool to cap-
ture and understand many aspects of the dynamics of real vehicles. Of course, the

M. Guiggiani, The Science of Vehicle Dynamics, DOI 10.1007/978-94-017-8533-4_3,
© Springer Science+Business Media Dordrecht 2014
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48 3 Vehicle Model for Handling and Performance

Fig. 3.1 Steering axis

underlying hypotheses impose some restrictions on its applicability, which a vehicle
engineer should be well aware of.

3.1 Mathematical Framework

Basically, a vehicle model (like most physical models) is made of three separate sets
of equations

• congruence (kinematic) equations;
• equilibrium equations;
• constitutive (tire) equations.

It may be convenient to consider first the whole vehicle and then the suspensions.

3.2 Vehicle Congruence (Kinematic) Equations

The analysis of the vehicle kinematics is based on Fig. 3.2.
It is good common practice to define the body-fixed reference system S =

(x, y, z;G), with unit vectors (i, j,k). It has origin in the center of mass G and
axes fixed relative to the vehicle. The x-axis marks the forward direction, while the
y-axis indicates the lateral direction. The z-axis is vertical, that is perpendicular to
the road, with positive direction upward.

3.2.1 Velocities

The motion of the vehicle body may be completely described by its angular speed
� and by the velocity VG of G, although any other point would do as well. Owing
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3.2 Vehicle Congruence (Kinematic) Equations 49

Fig. 3.2 Global kinematics
of a vehicle in planar motion

to the assumed planarity of the vehicle motion, VG is horizontal and � is vertical.
More precisely

VG = ui + vj (3.1)

and

� = rk (3.2)

The component u is called vehicle forward velocity, while v is the lateral velocity.
The quantity r is the vehicle yaw rate. Like in (2.1), the velocity of any point P of
the vehicle body is given by the well known formula

VP = VG + � × GP (3.3)

Therefore, the kinematics of the vehicle body is completely described by, e.g., the
three state variables u(t), v(t) and r(t), as shown in Fig. 3.2.

Under normal operating conditions u > 0 and

u � |v| and u � |r|l (3.4)

3.2.2 Yaw Angle and Trajectory

Let S0 = (x0, y0, z0;O0) be a ground-fixed reference system, as shown in Fig. 3.3,
with unit vectors (i0, j0,k0). Therefore

i0 · i = cosψ and j0 · i = − sinψ (3.5)
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50 3 Vehicle Model for Handling and Performance

Fig. 3.3 Ground-fixed
coordinate system and yaw
angle ψ

where ψ is the vehicle yaw angle. Accordingly

VG = ẋ0i0 + ẏ0j0 = ui + vj (3.6)

with

ẋ0 = u cosψ − v sinψ

ẏ0 = u sinψ + v cosψ

ψ̇ = r

(3.7)

The yaw angle ψ of the vehicle, at any time t = t̂ , is given by

ψ(t̂ ) = ψ(0) +
∫ t̂

0
r(t)dt (3.8)

Once the function of time ψ(t) is known, the absolute position of G with respect
to a frame fixed to the road is readily obtained by integrating the first two equations
in (3.7)

xG
0 (t̂ ) = xG

0 (0) +
∫ t̂

0
ẋ0dt = xG

0 (0) +
∫ t̂

0

[
u(t) cosψ(t) − v(t) sinψ(t)

]
dt

yG
0 (t̂ ) = yG

0 (0) +
∫ t̂

0
ẏ0dt = yG

0 (0) +
∫ t̂

0

[
u(t) sinψ(t) + v(t) cosψ(t)

]
dt

(3.9)

The two functions xG
0 (t) and yG

0 (t) are the parametric equations of the trajectory of
G with respect to the fixed reference system S0.

Equations (3.7) can be inverted to get

u(t) = cosψ(t)ẋ0(t) + sinψ(t)ẏ0(t)

v(t) = − sinψ(t)ẋ0(t) + cosψ(t)ẏ0(t)

r(t) = ψ̇(t)

(3.10)
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3.2 Vehicle Congruence (Kinematic) Equations 51

Fig. 3.4 Instantaneous velocity center C and definition of its coordinates S and R

These equations show that u(t) and v(t), despite being velocities, cannot be ex-
pressed as derivatives of other functions.1 In other words, a formula like v = ẏ is
totally meaningless.

3.2.3 Velocity Center

As well known, if r �= 0 any rigid body in planar motion has an instantaneous center
of zero velocity C, that is a point such that VC = 0. With the aid of Fig. 3.4 it is easy
to obtain the position of C of a vehicle in the body-fixed frame

GC = Si + Rj (3.11)

where

R = u

r
(3.12)

is the distance of C from the vehicle axis, and

S = −v

r
(3.13)

is the longitudinal position of C. Quite surprisingly, R is very popular, whereas S is
hardly mentioned anywhere else.

The instantaneous center of zero velocity C, or velocity center, is often misun-
derstood. Indeed, it is correct to say that the velocity field of the rigid body is like a

1The reason is that df = cosψdx0 + sinψdy0 is not an exact differential since there does not exist
a differentiable function f (x0, y0,ψ).
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52 3 Vehicle Model for Handling and Performance

pure rotation around C, that is

VP = rk × CP (3.14)

but it is totally incorrect to think that the same property extends to the acceleration
field. As a matter of fact, in general the acceleration aC of point C is not zero.
There is another point K , the acceleration center (described in Sect. 3.2.6) which
has zero acceleration. Therefore, the velocity field is rotational around C, while
the acceleration field is rotational around K . In other words, R is not a radius of
curvature, unless C = K .

According to (3.35), the velocity center C has acceleration

aC = (ax − r2S − ṙR
)
i + (ay − r2R + ṙS

)= r(Ṙi − Ṡj) (3.15)

3.2.4 Fundamental Ratios

Besides R = u/r and S = −v/r , other ratios appear to be relevant in vehicle kine-
matics. They are

β = v

u
= − S

R
(3.16)

and

ρ = r

u
= 1

R
(3.17)

The first is closely related to the vehicle slip angle β̂

β̂ = arctan(β) (3.18)

that is the angle between VG and i.
Instead of ρ, it is usual to employ

lρ = l
r

u
= l

R
(3.19)

This is the very classical Ackermann angle. However, in our opinion, ρ is more
fundamental than l/R, as will be shown. For the moment it suffices to note that the
wheelbase l is totally irrelevant for the description of the kinematics of the vehicle
body. What matters are only u, v and r or their combinations (ratios). In this context,
the wheelbase is quite an intruder. And by the way, what is the wheelbase in a three-
axle vehicle?
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3.2 Vehicle Congruence (Kinematic) Equations 53

3.2.5 Accelerations and Radii of Curvature

The angular acceleration is simply given by

�̇ = ṙk = ψ̈k (3.20)

A little more involved is the evaluation of the absolute acceleration aG of G

aG = dVG

dt
= u̇i + urj + v̇j − vri

= (u̇ − vr)i + (v̇ + ur)j

= ax i + ayj (3.21)

where

di
dt

= rj and
dj
dt

= −ri (3.22)

since the reference system S rotates with the vehicle body.
Equation (3.21) also defines the longitudinal acceleration ax

ax = u̇ − vr

= u̇ − u2βρ (3.23)

and the lateral acceleration ay

ay = v̇ + ur

= uβ̇ + u̇β + u2ρ (3.24)

where longitudinal and lateral refer to the vehicle axis x, not to the trajectory. Again,
ax and ay are not, in general, the second derivatives of some functions. In other
words, a formula like ay = ÿ is totally meaningless, and hence wrong.

Under steady-state conditions (u̇ = v̇ = 0), the lateral acceleration becomes

ãy = ur = u2ρ = u2

R
(3.25)

Whenever β �= 0, the trajectory of G is not tangent to the vehicle axis x. The unit
vector t, directed like VG (and hence tangent to the trajectory of G), is given by

t = VG

|VG| = cosβi + sinβj (3.26)

and the normal unit vector n by

n = k × t = − sinβi + cosβj (3.27)
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The acceleration aG can be also expressed as

aG = at t + ann (3.28)

with tangential component at (directed like VG)

at = aG · t = ax cosβ + ay sinβ = u̇u + v̇v√
u2 + v2

(3.29)

and centripetal component an (orthogonal to VG)

an = aG ·n = −ax sinβ + ay cosβ = r(u2 + v2) + v̇u − u̇v√
u2 + v2

(3.30)

since sinβ = v/VG and cosβ = u/VG, with VG = |VG| = u/ cosβ .
The radius of curvature RG of the trajectory of G is readily obtained as

RG = V 2
G

an

= (u2 + v2)
3
2

r(u2 + v2) + v̇u − u̇v
= VG

r + v̇u−u̇v

V 2
G

(3.31)

It is worth remarking that the velocity center C is not the center of curvature of
trajectories, unless (v̇u − vu̇) = 0.

Also useful is the curvature ρG = 1/RG

ρG = r + β̇

u
cosβ = r√

u2 + v2
+ v̇u − vu̇

(u2 + v2)
3
2

(3.32)

Under normal operating conditions |β| � 1, i.e. β ≈ β̂ , and hence

ρG ≈ r + β̇

u
= ρ + β̇

u
(3.33)

Quite a compact and interesting formula.
The acceleration of any point P of the vehicle body is given by the well known

formula

aP = aG + �̇ × GP + � × (� × GP) (3.34)

which, in case of planar motion, simplifies into

aP = aG + ṙk × GP − r2GP (3.35)

3.2.6 Acceleration Center

The acceleration field of a rigid body in planar motion is like a pure rotation around
the acceleration center K , that is a point which has aK = 0. According to (3.35),
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Fig. 3.5 Velocity center C, acceleration center K and inflection circle

the acceleration aP of any point P must be given by

aP = ṙk × KP − r2KP (3.36)

Therefore, the angle ξ between aP and PK is such that

tan(ξ) = ṙ

r2
(3.37)

By setting P = G in (3.36), as shown in Fig. 3.5

aG = ṙk × KG − r2KG (3.38)

we obtain that

|KG| = aG√
ṙ2 + r4

(3.39)

or, more precisely

GK = axr
2 − ay ṙ

r4 + ṙ2
+ ax ṙ + ayr

2

r4 + ṙ2
(3.40)

The acceleration center lies necessarily on the inflection circle, which is the set of
all points whose trajectories have an inflection point (Fig. 3.5). Actually, the velocity
center C does not belong to the inflection circle, although it looks like. Point K

spans the inflection circle depending on the value of the ratio ṙ/r2, as shown in
Fig. 3.5. This topic will be addressed in detail in Chap. 5, entirely devoted to the
kinematics of cornering.
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3.2.7 Tire Kinematics (Tire Slips)

So far only the kinematics of the vehicle body has been addressed. Roughly speak-
ing, it is what that mostly matters to the driver. However, vehicle engineers are also
interested in the kinematics of the wheels, since it strongly affects the forces exerted
by the tires.

According to (3.3), the velocity of the center P11 of the left front wheel is given
by

V11 = VG + rk × GP11 = (ui + vj) + rk ×
(

a1i + t1

2
j
)

(3.41)

Performing the same calculation for the centers of all wheels yields

V11 =
(

u − rt1

2

)
i + (v + ra1)j

V12 =
(

u + rt1

2

)
i + (v + ra1)j

V21 =
(

u − rt2

2

)
i + (v − ra2)j

V22 =
(

u + rt2

2

)
i + (v − ra2)j

(3.42)

Therefore, the angles β̂ij between the vehicle longitudinal axis i and Vij can be
obtained as (Fig. 3.4)

tan(β̂11) = v + ra1

u − rt1/2
= β11 = tan(δ11 − α11)

tan(β̂12) = v + ra1

u + rt1/2
= β12 = tan(δ12 − α12)

tan(β̂21) = v − ra2

u − rt2/2
= β21 = tan(δ21 − α21)

tan(β̂22) = v − ra2

u + rt2/2
= β22 = tan(δ22 − α22)

(3.43)

The tire slip angles αij of each wheel (positive if clockwise) are given by (Fig. 3.4)

αij = δij − β̂ij (3.44)

It is very important to realize that even small steering angles δij may significantly
affect αij and hence the tire friction forces.

As thoroughly discussed in Sect. 2.7.2, tire kinematics can, in most cases, be
conveniently described by means of the translational slips σx and σy and the spin
slip ϕ, defined in (2.55), (2.56) and (2.57), respectively.
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3.2 Vehicle Congruence (Kinematic) Equations 57

According to (2.43), the rolling velocity of each wheel is equal to ωij ri , where
ωij is the angular velocity of the rim and ri is the rolling radius. The speed of travel
Vij of each wheel was obtained in (3.42). Considering also the steering angles δij ,
we obtain for each tire

• longitudinal slips:

σx11 = [(u − rt1/2) cos(δ11) + (v + ra1) sin(δ11)] − ω11r1

ω11r1

σx12 = [(u + rt1/2) cos(δ12) + (v + ra1) sin(δ12)] − ω12r1

ω12r1

σx21 = [(u − rt2/2) cos(δ21) − (v − ra2) sin(δ21)] − ω21r2

ω21r2

σx22 = [(u + rt2/2) cos(δ22) − (v − ra2) sin(δ22)] − ω22r2

ω22r2

(3.45)

• lateral slips:

σy11 = (v + ra1) cos(δ11) − (u − rt1/2) sin(δ11)

ω11r1

σy12 = (v + ra1) cos(δ12) − (u + rt1/2) sin(δ12)

ω12r1

σy21 = (v − ra2) cos(δ21) − (u − rt2/2) sin(δ21)

ω21r2

σy22 = (v − ra2) cos(δ22) − (u − rt2/2) sin(δ22)

ω22r2

(3.46)

According to (2.57), the evaluation of the spin slips ϕij requires also the knowl-
edge of the camber angles γij , of the wheel yaw rates ζ̇ij = r + δ̇ij and of the camber
reduction factors εi

ϕij = − r + δ̇ij + ωij sinγij (1 − εi)

ωij ri
(3.47)

The sign conventions are like in Fig. 2.2. Therefore, under static conditions, the two
wheels of the same axle have camber angles of opposite sign

γ 0
i1 = −γ 0

i2 (3.48)

This is contrary to common practice, but more consistent and more convenient for
a systematic treatment. The kinematic equations for camber variations due to roll
motion will be discussed in Sect. 3.8.3.

Similarly, the kinematic equations for roll steer will be given in (3.123). Their
presentation must be delayed till the suspension analysis has been completed.
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Owing to (3.4), the expressions of the translational slips can be simplified under
normal operating conditions and small steering angles

σx11 � (u − rt1/2) − ω11r1

ω11r1
, σy11 � (v + ra1) − uδ11

ω11r1

σx12 � (u + rt1/2) − ω12r1

ω12r1
, σy12 � (v + ra1) − uδ12

ω12r1

σx21 � (u − rt2/2) − ω21r2

ω21r2
, σy21 � (v − ra2) − uδ21

ω21r2

σx22 � (u + rt2/2) − ω22r2

ω22r2
, σy22 � (v − ra2) − uδ22

ω22r2

(3.49)

3.3 Vehicle Constitutive (Tire) Equations

In any vehicle model we have to set up equations that relate the vehicle motion to
the grip forces each tire exchanges with the road.

Two chapters are devoted to the analysis of the mechanical behavior of wheels
with tires. The topic is quite complex. From that analysis, several tire models of
increasing complexity can be formulated. However, in all of them the grip forces
depend at least on the (theoretical) slips and the vertical loads acting on the tire.
These two aspects cannot be omitted. Other effects, like the transient behavior can
be included if necessary.

As discussed in Sect. 2.8, after having extensively tested a tire, the quantities
listed in (2.73) should be available to the vehicle dynamicist to properly define the
(steady-state) pure rolling conditions. Departing from pure rolling means having
grip forces acting in the contact patch. Under steady-state conditions, it is often
assumed that, for each wheel with tire, these grip forces and moments obey relations
in the following form

Fx = Fx(Fz, γ, σx, σy,ϕ)

Fy = Fy(Fz, γ, σx, σy,ϕ)

Mz = Mz(Fz, γ, σx, σy,ϕ)

(3.50)

where γ is the camber angle, σx is the longitudinal theoretical slip, σy is the lateral
theoretical slip and ϕ is the spin slip.

As shown in Sect. 3.5.3, and in particular in (3.58), the steering angles δij have
also to be taken into account to obtain the longitudinal and lateral forces with respect
to the vehicle frame.

We recall that using the tire slips simplifies the analysis, but implicitly discards
any possible influence of the forward speed on the tire behavior. In race cars, this
influence may not be negligible.
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3.4 Vehicle Equilibrium Equations 59

3.4 Vehicle Equilibrium Equations

The classical dynamic equilibrium equations for a rigid body are [4]

maG = F

K̇r
G = MG

(3.51)

where m is the total mass of the vehicle and K̇r
G is the time rate of change of the

angular momentum with respect to G.
The acceleration aG of G has been obtained in (3.21)

aG = (u̇ − vr)i + (v̇ + ur)j = ax i + ayj (3.21′)

The rate of change of the angular momentum K̇r
G can be conveniently expressed

in terms of the inertia tensor in the body-fixed reference frame

K̇r
G = (−Jzx ṙ + Jyzr

2)i + (−Jzxr
2 − Jyzṙ

)
j + Jzṙk

≈ −Jzx

(
ṙi + r2j

)+ Jzṙk (3.52)

since Jyz ≈ 0 and |Jzx | � Jz.
The total external force F and the total external couple MG can be represented in

terms of their components in the body-fixed reference system

F = Xi + Y j + Zk

MG = Li + Mj + Nk
(3.53)

The components in (3.53) have the following standard names:

• X: longitudinal force;
• Y : lateral or side force;
• Z: vertical or normal force;
• L: rolling moment;
• M : pitching moment;
• N : yawing moment.

As already stated, the vehicle body has a planar motion. However, the forces
acting on the vehicle do not form a planar system.

3.5 Forces Acting on the Vehicle

There are four different types of external forces acting on a road vehicle:

(1) weight (gravitational force);
(2) aerodynamic force;
(3) road-tire friction forces;
(4) road-tire vertical forces.
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3.5.1 Weight

The weight W is simply given by

W = −Wk = −mgk (3.54)

where g is the gravitational acceleration. As well known, the weight force is applied
in G. Therefore, it does not contribute to MG.

3.5.2 Aerodynamic Force

The aerodynamic force

Fa = −Xa i + Yaj + Zak (3.55)

depends essentially on the vehicle shape and size, and on the relative speed Va

between the vehicle and the air. An in-depth discussion on vehicle aerodynamics is
beyond the scope of the present work. Here it may suffice to state without proof that

Xa = 1

2
ρaV

2
a CxSa, Ya = 1

2
ρaV

2
a CySa, Za = 1

2
ρaV

2
a CzSa (3.56)

where ρa is the air density, Va = |Va|, Sa is the area of the vehicle frontal projection
(frontal area) and Cx,Cy,Cz are shape coefficients. Traditionally Cx > 0, which
explains the minus sign in (3.55). If Va is directed like the vehicle axis i, that is
Va = −Vai, the coefficient Cy = 0 and hence Ya = 0.

In a modern car, the frontal area Sa is about 1.8 m2 and the drag coefficient Cx

ranges between 0.30 and 0.35. A Formula One car has a frontal area of about 1.3 m2

and a drag coefficient which ranges between 0.7 and 1. It is quite usual to provide
directly the product SaCx as a more effective way to compare the aerodynamic
efficiency of cars. For instance, a Formula One car has SaCx of about 1.2 m2, while
a commercial one may have it below 0.6 m2.

Formula 1 cars have Cz with very high negative values to achieve a very high
aerodynamic downforce. Typically, SaCz � −5.2 m2.

In general, the aerodynamic force Fa in not applied at G (why should it be?) and
therefore it contributes to MG with an aerodynamic moment Ma = Max i + May j +
Mazk, the biggest component being May (pitch moment).

It is common practice to do like in Fig. 3.6, thus defining the front and rear
aerodynamic vertical forces (positive upward) according to

Za
1 = 1

l
[Zaa2 − May + Xah] = 1

2
ρaV

2
a Cz1Sa

Za
2 = 1

l
[Zaa1 + May − Xah] = 1

2
ρaV

2
a Cz2Sa

(3.57)
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Fig. 3.6 Aerodynamic forces

where Cz1 and Cz2 have been introduced. In other words, in straight running, the
aerodynamic force Fa is given as two vertical loads Za

1 and Za
2 acting directly on

the front and rear tires, respectively, plus the aerodynamic drag Xa acting at road
level.

3.5.3 Road-Tire Friction Forces

The road-tire friction forces Ftij are the resultant of the tangential stress in each
footprint, as shown in (2.15). Typically, for each tire, the tangential force Ftij is
split into a longitudinal component Fxij

and a lateral component Fyij
, as shown in

Fig. 3.7. It is very important to note that these two components refer to the wheel
reference system shown in Fig. 2.2, not to the vehicle frame.

If δij is the steering angle of a wheel, the components of the tangential force in
the vehicle frame S are given by

Ftij = Xij i + Yij j

where Xij = Fxij
cos(δij ) − Fyij

sin(δij )

Yij = Fxij
sin(δij ) + Fyij

cos(δij ) (3.58)

with obvious simplifications if δij is very small.
To deal with shorter expressions, it is convenient to define

X1 = X11 + X12, X2 = X21 + X22

Y1 = Y11 + Y12, Y2 = Y21 + Y22

ΔX1 = X12 − X11

2
, ΔX2 = X22 − X21

2

ΔY1 = Y12 − Y11

2
, ΔY2 = Y22 − Y21

2

(3.59)
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Fig. 3.7 Road-tire friction
forces

Even for not so small steering angles, simpler expressions can be obtained by
observing that small errors in the values of the steering angles δij have marginal
influence on the global equilibrium.2 More precisely, in the equilibrium equations
we can “force” the steering angles of the front wheels δ11 and δ12 both to be equal
to δ1 = (δ11 + δ12)/2. Similarly, the rear wheels can be set to have the same (often
zero) steering, that is δ2 = (δ21 + δ22)/2.

It should be clearly understood that often, in real vehicles, the two wheels of
the same axle are intentionally slightly nonparallel. Assuming the two wheels to be
parallel is harmless for the global equilibrium of the vehicle, whereas it would be
quite influential on the tire behavior.

Strictly speaking, the tangential forces Fyij
are not applied at the center of the

contact patch. In general, there are also vertical moments Mzij
. However, these mo-

ments have negligible effects on the dynamics of the vehicle as a whole. Indeed,
taking Mzij

into account would mean displacing by only a few centimeters the ac-
tion lines of Ftij .

On the other hand, vertical moments do affect quite a bit the steering system. In
particular, they must be included in vehicle models with compliant steering system.

2But not on the tire slips.
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3.5.4 Road-Tire Vertical Forces

The road-tire vertical forces Fzij
k are the resultant of the normal pressure in each

footprint, as in (2.13).
As discussed in Sect. 2.6.3, the displacement with respect to the center of the

footprint of the line of action of the vertical forces is the main cause of rolling re-
sistance. This phenomenon can be neglected when studying, e.g., extreme braking
or handling, whereas it is of paramount importance for the estimation of fuel con-
sumption or of power losses in general.

It is customary to add the vertical forces of the same axle

Z1 = Fz11 + Fz12 and Z2 = Fz21 + Fz22 (3.60)

and to define the differences

ΔZ1 = Fz12 − Fz11

2
and ΔZ2 = Fz22 − Fz21

2
(3.61)

usually called lateral load transfers.
Inverting these equations yields for the vertical load on each wheel

Fz11 = Z1

2
− ΔZ1 = Z11, Fz12 = Z1

2
+ ΔZ1 = Z12

Fz21 = Z2

2
− ΔZ2 = Z21, Fz22 = Z2

2
+ ΔZ2 = Z22

(3.62)

3.6 Vehicle Equilibrium Equations (more Explicit Form)

The explicit expressions of all the force and moment components in (3.53) are ob-
tained by collecting all the contributions of the external actions.

For a two-axle vehicle we obtain the forces

X = X1 + X2 − Xa

Y = Y1 + Y2

Z = Z1 + Z2 − (mg − Za1 − Za2)

and the moments

L = −ΔZ1t1 − ΔZ2t2 + (Y1 + Y2)h

M = −Z1a1 + Z2a2 − (X1 + X2 − Xa)h − Za1a1 + Za2a2

N = Y1a1 − Y2a2 + ΔX1t1 + ΔX2t2

(3.63)

These expressions can be inserted into (3.63) and then into (3.51) to obtain the six
global equilibrium equations.

www.cargeek.ir

www.cargeek.ir

http://www.cargeek.ir/
http://www.cargeek.ir/


64 3 Vehicle Model for Handling and Performance

Actually, it is more convenient to split them into the following two sets of equa-
tions. A first set of three equations, which deals explicitly with the vehicle motion

max = m(u̇ − vr) = X = X1 + X2 − Xa

may = m(v̇ + ur) = Y = Y1 + Y2

Jzṙ = N = Y1a1 − Y2a2 + ΔX1t1 + ΔX2t2

(3.64)

and a second set that involves the constraint forces (vertical loads) to make the
vehicle comply with the flatness of the road surface

0 = Z = Z1 + Za1 + Z2 + Za1 − mg

−Jzx ṙ = L = (Y1 + Y2)h − ΔZ1t1 − ΔZ2t2

−Jzxr
2 = M = −(Z1 + Za1)a1 + (Z2 + Za2)a2 − (X1 + X2 − Xa)h

(3.65)

Equations (3.64) and (3.65) are really important. If fully understood, they provide a
lot of information on vehicle dynamics.

Combining (3.64) and (3.65), the second set can be recast in a form which better
highlights the interplay between vertical loads and vehicle motion

Z1 + Za1 + Z2 + Za2 = mg

ΔZ1t1 + ΔZ2t2 = mayh + Jzx ṙ

(Z1 + Za1)a1 − (Z2 + Za2)a2 = −maxh + Jzxr
2

(3.66)

where Jzx ṙ and Jzxr
2 are usually negligible.

It is convenient to define

NY = Y1a1 − Y2a2

NX = ΔX1t1 + ΔX2t2
(3.67)

to highlight the different origin of the two contributions to the yawing moment

N = NY + NX = Jzṙ (3.68)

NY is due to the lateral forces, while NX comes from the difference between the
longitudinal forces of the two wheels of the same axle.

From

Y = Y1 + Y2

NY = Y1a1 − Y2a2 = Jzṙ − NX

(3.69)

we obtain the lateral (grip) forces exerted by the road on each axle

Y1 = Ya2 + NY

l
= Yab

2

l
and Y2 = Ya1 − NY

l
= Yab

1

l
(3.70)
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where

ab
1 = a1 − xN and ab

2 = a2 + xN

with xN = NY

Y
(3.71)

Therefore ab
1 + ab

2 = a1 + a2 = l.
An equivalent, more “dynamic”, form of (3.70) is

Y1 = maya2

l
+ N − NX

l
and Y2 = maya1

l
− N − NX

l
(3.72)

where N = Jzṙ .
Most classical vehicle dynamics assumes NY = N , that is NX = 0; this is correct

except when the vehicle:

• has a limited slip (or locked) differential;
• has ESP and it has been activated;
• is braking with locked wheels on a road with nonuniform grip coefficients.

3.7 Load Transfers

Load transfers ΔZ, ΔZ1 and ΔZ2 need additional discussion. Indeed, the vertical
load acting on a tire does affect very much its behavior. Therefore, it is important to
discuss the relationships between vehicle motion and vertical loads (3.62).

3.7.1 Longitudinal Load Transfer

From the first and last equations in (3.66) it is easy to obtain, for a two-axle vehicle,
the vertical loads that the road applies on each axle

Z1 = Z0
1 + ΔZ − Za

1

Z2 = Z0
2 − ΔZ − Za

2

(3.73)

where

ΔZ = −maxh

l
+ Jzxr

2

l
� −maxh

l
(3.74)

is the longitudinal load transfer due to the longitudinal acceleration ax , and

Z0
1 = mga2

l
, Z0

2 = mga1

l
(3.75)

are the static loads on each axle. In a motionless vehicle the vertical loads have to
balance only the vehicle weight.
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66 3 Vehicle Model for Handling and Performance

During vehicle motion, the vertical loads change whenever there are accelera-
tions. In case of substantial aerodynamic vertical loads, the vehicle speed also af-
fects the vertical loads.

3.7.2 Lateral Load Transfers

Lateral load transfers ΔZ1 and ΔZ2 appear explicitly only in the second equation
in (3.65), which may be recast as

ΔZ1t1 + ΔZ2t2 = Yh + Jzx ṙ

= mayh + Jzx ṙ (3.76)

where ay = v̇ + ur is the lateral acceleration. Of course, one equation is not enough
to obtain ΔZ1 and ΔZ2. Even under static conditions, (3.76) yields, for a two-axle
vehicle

ΔZ0
1 t1 + ΔZ0

2 t2 = 0 (3.77)

which shows that the static lateral load transfers ΔZ0
1 and ΔZ0

2 may have in princi-
ple any value. However, with the aid of four scales, it is part of the set-up procedure
to achieve ΔZ0

1 = ΔZ0
2 = 0.

Suspension geometry and compliances influence directly the ratio ΔZ1/ΔZ2.
This is a fundamental aspect of vehicle dynamics.

3.7.3 Vertical Loads on Each Tire

The global amount of lateral load transfer is determined by (3.76), but how much of
it goes to the front and how much to the rear cannot be found without looking at the
suspensions and at the tires (unless the vehicle is a three-wheeler).

This is the motivation for the next Sect. 3.8, where some of the front and rear
suspension features will be exploited.

Summing up, the vertical loads on each tire are

Z11 = 0.5
(
Z0

1 − Za
1 + ΔZ

)− ΔZ1

Z12 = 0.5
(
Z0

1 − Za
1 + ΔZ

)+ ΔZ1

Z21 = 0.5
(
Z0

2 − Za
2 − ΔZ

)− ΔZ2

Z22 = 0.5
(
Z0

2 − Za
2 − ΔZ

)+ ΔZ2

(3.78)
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or, more explicitly

Z11 = 1

2

[
mga2

l
− 1

2
ρaSaCz1u

2 − maxh − Jzxr
2

l

]
− ΔZ1

Z12 = 1

2

[
mga2

l
− 1

2
ρaSaCz1u

2 − maxh − Jzxr
2

l

]
+ ΔZ1

Z21 = 1

2

[
mga1

l
− 1

2
ρaSaCz2u

2 + maxh − Jzxr
2

l

]
− ΔZ2

Z22 = 1

2

[
mga1

l
− 1

2
ρaSaCz2u

2 + maxh − Jzxr
2

l

]
+ ΔZ2

(3.79)

where ΔZi will be obtained after the suspension analysis (see Sect. 3.8.11).

3.8 Suspension First-Order Analysis

Consistently with the hypotheses listed at p. 47, the suspension mechanics will be
analyzed assuming very small suspension deflections and tire deformations. This is
what a first order analysis is all about. Of course, it is not the whole story, but it is a
good starting point.3

More precisely, the following aspects will be addressed:

• suspension internal coordinates;
• suspension and tire stiffnesses;
• suspension internal equilibrium.

3.8.1 Suspension Reference Configuration

Figure 3.8 shows two possible suspensions in their reference configuration (vehicle
going straight at constant speed). It also serves the purpose of defining some relevant
quantities.

First of all, the reference configuration is supposed to be perfectly symmetric.
More precisely, the left and right sides are exactly alike (including springs).

Points Ai mark the centers of the tire contact patches. Points Bi are the instan-
taneous centers of rotation of the wheel hub with respect to the vehicle body. Here,
for simplicity, the suspension linkage is supposed to be rigid and planar. In a swing

3At first it may look paradoxical, but it is not. Actually it is common practice in engineering. Just
take the most classical cantilever beam, of length l with a concentrated load F at its end. Strictly
speaking, the bending moment at the fixed end is not exactly equal to F l, since the beam deflection
takes the force a little closer to the wall. But this effect is usually neglected.
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Fig. 3.8 Suspensions in their reference configuration: swing axle (left) and double wishbone sus-
pension (right)

axle suspension, point B2 is indeed the center of a joint, whereas in a double wish-
bone suspension (right) point B1 has to be found by a well known method. In both
cases, the distances ci and bi set the position of Bi with respect to Ai (Fig. 3.8). As
usual, t1 and t2 are the front and rear track lengths.

Also shown in Fig. 3.8 are points Q1 and Q2. They are given by the intersection
of the straight lines connecting Ai and Bi on both sides. Because of symmetry, they
lay on the centerline at heights q1 and q2. Points Q1 and Q2 are the so-called roll
centers and their role in vehicle dynamics will be addressed shortly.

3.8.2 Suspension Internal Coordinates

For each axle, four “internal” coordinates are necessary to monitor the suspension
conditions with respect to a reference configuration. A possible selection of coordi-
nates may be as follows (Fig. 3.9)

• body roll angle φs
i due to suspension deflections only;

• body vertical displacement zs
i due to suspension deflections only (which results

in track variation Δti );
• body roll angle φ

p
i due to tire deformations only;

• body vertical displacement z
p
i due to tire deformations only.

Figure 3.9 shows how each single coordinate changes the vehicle configuration for
a swing axle suspension.4 These four coordinates are, by definition, independent. It
will depend on the vehicle dynamics whether they change or not. In other words, the
kinematic schemes of Fig. 3.9 have nothing to do with real operating conditions. It is
therefore legitimate, but not mandatory at all, to define, e.g., the roll φs

i of the vehicle
body keeping the track ti fixed and without any tire deformation, as in Fig. 3.9.

4A more precise definition of roll angle is given in Sect. 9.2.
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Fig. 3.9 Suggested selection of internal coordinates: (a) roll angle φs
i due to suspension deflec-

tions only, (b) track variation Δti , (c) roll angle φ
p
i due to tire deformations only, (d) vertical

displacement z
p
i due to tire deformations only

The first order relationship between zs
i and Δti is given by (Fig. 3.9)

zs
i = − ci

2bi

Δti = − ti

4qi

Δti (3.80)

which, because of symmetry, does not depend on φs
i and φ

p
i .

3.8.3 Camber Variation

Any other kinematic quantity is, by definition, a function of the selected set of co-
ordinates (φs

i ,Δti, φ
p
i , z

p
i ).

It is quite important to monitor the variation of the wheel camber angle γij as a
function of the selected coordinates (φs

i ,Δti, φ
p
i , z

p
i ). In a first order analysis, the

investigation is limited to the series expansion

Δγij ≈ ∂γij

∂φs
i

φs
i + ∂γij

∂Δti
Δti + ∂γij

∂φ
p
i

φ
p
i + ∂γij

∂z
p
i

z
p
i (3.81)

where all derivatives are evaluated at the reference configuration. From Fig. 3.8
and also with the aid of Fig. 3.9, we obtain the following general results for any
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symmetric planar suspension (cf. Fig. 9.5)
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂γi1

∂φs
i

= ∂γi2

∂φs
i

= − ti/2 − ci

ci

= −qi − bi

bi

∂γi1

∂Δti
= − ∂γi2

∂Δti
= 1

2bi

∂γi1

∂φ
p
i

= ∂γi2

∂φ
p
i

= 1

∂γij

∂z
p
i

= 0

(3.82)

The sign convention for the camber variations Δγij is like in Fig. 2.2. Therefore, in
Fig. 3.9(b) we have Δγi1 < 0 and Δγi2 > 0.

Equations (3.81) and (3.82) yield

Δγi1 ≈ −
(

qi − bi

bi

)
φs

i + φ
p
i + 1

2bi

Δti

Δγi2 ≈ −
(

qi − bi

bi

)
φs

i + φ
p
i − 1

2bi

Δti

(3.83)

This is quite a remarkable formula. It is simple, yet profound. For instance, the two
suspension schemes of Fig. 3.8, which look so different, do have indeed very differ-
ent values of the first two partial derivatives in (3.82). On the other hand, it should
not be forgotten that (3.81) is merely a kinematic relationship. There is no dynamics
in it. Therefore, we must be careful not to attempt to extract from it information it
cannot provide at all.

Another common mistake is to state, e.g., that a suspension scheme has a typical
value of the partial derivative ∂γij /∂φs

i , without specifying which are the other three
internal coordinates. This is clearly meaningless. The value of the partial derivative
is very much affected by which other coordinates are kept constant.

3.8.4 Vehicle Internal Coordinates

Three internal coordinates are necessary to monitor the vehicle condition with re-
spect to a reference (often static) configuration. A suitable choice may be to take as
coordinates the vehicle body roll angle φ and the front and rear vertical displace-
ments z1, z2 of the vehicle centerline (Fig. 3.10). An alternative selection could be
the roll angle φ and the track variations Δt1 and Δt2.

These three coordinates are, of course, independent. Whether they change or not
will depend on the vehicle dynamics.

The total roll angle φ of the vehicle body is given by

φ = φs
1 + φ

p

1 = φs
2 + φ

p

2 (3.84)
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Fig. 3.10 Fictitious loads to obtain roll and vertical stiffnesses

that is, by the roll angle due to the suspension deflection plus the roll angle due to
the tire deformation.

Similarly, the front and rear vertical displacements z1, z2 of the vehicle centerline
are

z1 = zs
1 + z

p

1 and z2 = zs
2 + z

p

2 (3.85)

where zs
i are the vertical displacements of the vehicle centerline due to suspension

deflections only and z
p
i are the vertical displacements due to the tire deformations

only.
Equations (3.84) and (3.85) precisely relate the eight suspension internal coordi-

nates to the three vehicle internal coordinates.

3.8.5 Roll and Vertical Stiffnesses

The goal of this section is to define the stiffness associated to each internal coordi-
nate.

It is important to realize that the symmetric behavior of the two suspensions of
the same axle plays a key role here. If, for some reason, the two suspensions were
different, then we should also have to consider the cross-coupled stiffnesses.

3.8.5.1 Roll Stiffnesses

To this end, we assume to apply first a (small) pure rolling moment Lbi to the vehicle
body.

As shown in Fig. 3.10, application of a (small) pure rolling moment Lbi to the
vehicle body results in a (small) pure roll rotation φ̂i such that5

Lb = kφφ̂ = (kφ1 + kφ2)φ̂ (3.86)

5The symbol φ̂ (instead of just φ) is used to stress that this is not the roll angle under operating
conditions.
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where kφ is, by definition, the global roll stiffness of the vehicle. Moreover, by
measuring the corresponding load transfers

ΔZL
1 t1 = kφ1 φ̂ and ΔZL

2 t2 = kφ2 φ̂ (3.87)

also the front and rear vehicle roll stiffnesses kφ1 and kφ2 can be obtained. The load
transfers ΔZL

1 and ΔZL
2 depend on the combined deflections of suspensions and

tires. Of course, z1 = z2 = 0, since they are not affected by Lb .6

For further developments, it is necessary to determine how much of φ̂ is due to
the suspension springs and how much to the tire vertical deflections. More precisely,
it is necessary to single out the suspension roll stiffnesses ks

φ1
and ks

φ2
from the tire

roll stiffnesses k
p
φ1

and k
p
φ2

.

Under a pure moment Lbi, the tires and the suspensions of the same axle behave
like springs in series. Therefore

kφi
= ks

φi
k
p
φi

ks
φi

+ k
p
φi

(3.88)

which means that, for each axle

ΔZL
i ti = kφi

φ̂ = ks
φi

φ̂s
i = k

p
φi

φ̂
p
i = Lb

i with φ̂ = φ̂s
i + φ̂

p
i (3.89)

where φ̂s
i and φ̂

p
i are the roll angles due, respectively, to the suspension and tire

deflections that the vehicle body undergoes under the action of a pure moment Lbi.
Of course, Lb

1 + Lb
2 = Lb .

If p1 and p2 are the vertical stiffnesses of a single front and rear tire, respec-
tively (in a first-order analysis, a linear behavior can be safely assumed), the tire roll
stiffnesses are given by

k
p
φi

= pit
2
i

2
(3.90)

which means that Lb
i = ΔZL

i ti = k
p
φi

φ̂
p
i . Once k

p
φi

are known, the suspension roll
stiffness ks

φi
for each axle can be obtained from (3.88).

3.8.5.2 Vertical Stiffnesses

Similarly, to obtain the vertical stiffnesses, small vertical loads Zb
i are assumed to

be applied over each axle.

6This is true only if the left and right suspensions have perfectly symmetric behavior. For instance,
the so-called contractive suspensions do not behave the same way and, therefore, a pure rolling
moment also yields some vertical displacement.
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As shown in Fig. 3.10, application to the vehicle body centerline, exactly over the
front axle, of an upward (small) vertical load Zb

1k results only in a (small) vertical
displacement ẑ1 such that

Zb
1 = kz1 ẑ1 (3.91)

which defines the global front vertical stiffness kz1 . Doing the same on the rear axle
provides

Zb
2 = kz2 ẑ2 (3.92)

which defines the rear vertical stiffness kz2 .
Again, to single out the suspension and tire contributions, first observe that the

two tires of each axle have a vertical stiffness

k
p
zi

= 2pi (3.93)

Therefore, the corresponding suspension vertical stiffness ks
zi

can be obtained from

kzi
= ks

zi
k
p
zi

ks
zi

+ k
p
zi

(3.94)

which means that for each axle

kzi
ẑi = ks

zi
ẑs
i = k

p
zi
ẑ
p
i = Zb

i with ẑi = ẑs
i + ẑ

p
i (3.95)

where ẑs
i and ẑ

p
i are the vertical displacements of the centerline due, respectively, to

the suspension and tire deflections.
The four numbers ks

φ1
, ks

z1
, ks

φ2
and ks

z2
completely characterize the first-order

elastic features of the front and rear suspensions. Similarly, the four numbers k
p
φ1

,

k
p
z1 , k

p
φ2

and k
p
z2 completely characterize the first-order elastic features of the front

and rear tires.

3.8.6 Suspension Internal Equilibrium

The forces exerted by the road on each tire are transferred to the vehicle body by the
suspensions. It is important to find out how much of these loads goes through the
suspension linkages and how much through the springs and dampers, thus requiring
suspension deflections.

As already discussed in Sect. 3.5, each tire is subject to a force Xij i+Yij j+Zij k,
which, for simplicity, is assumed to be applied at the center of the contact patch.
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Fig. 3.11 No-roll centers and no-roll axis for a swing arm suspension (left) and a double wishbone
suspension (right)

3.8.7 Effects of a Lateral Force

So far the suspension geometry has played no role (except in Sect. 3.8.3), at least
not explicitly. This was done purposely to highlight which vehicle features are not
directly related to the suspension kinematics.

The fundamental reason that makes the suspension geometry so relevant is that
vehicle bodies are subject to horizontal forces (inertia and aerodynamic forces).

Starting from a reference configuration, and according to the equilibrium equa-
tion (3.64), let us apply to the vehicle body a lateral force −Y j, with Y = may . As
shown in Fig. 3.11, be this force located at height h above the road and at distances
ab

1 and ab
2 from the front and rear axles, respectively. As shown in (3.70), ab

1 and ab
2

differ from a1 and a2 whenever the yaw moment NY �= 0.
Exactly like in (3.70), in a two-axle vehicle the lateral forces exerted by the road

on each axle to balance Y are given by

Y1 = Yab
2

l
and Y2 = Yab

1

l
(3.96)

It is very important to recall that these two forces can be obtained from the global
equilibrium equations only. Therefore, they are not affected by the suspensions, by
the type of tires, by the amount of grip, etc.
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Moreover, like in (3.76),

ΔZ1t1 + ΔZ2t2 = Yh (3.97)

This is all that can be achieved from global equilibrium.
Among the effects of Y j there is, in general, a (small) roll angle φ of the vehicle

body. This angle φ is the sum of φs
i due to the suspension deformations and φ

p
i due

to the tire deflections

φ = φs
1 + φ

p

1 = φs
2 + φ

p

2 (3.98)

From the definition of the tire roll stiffnesses (3.90), it immediately arises that

ΔZ1t1 = k
p
φ1

φ
p

1 and ΔZ2t2 = k
p
φ2

φ
p

2 (3.99)

and hence, from (3.97)

Yh = k
p
φ1

φ
p

1 + k
p
φ2

φ
p

2 (3.100)

However, to obtain ΔZ1 and ΔZ2, it is necessary to look at the suspension kine-
matics. More precisely, in a first-order analysis, it suffices to consider the roll centers
and the roll axis, as discussed in the next section.

3.8.8 No-roll Centers and No-roll Axis

Let us start having a closer look at the suspension linkages. In case of purely
transversal independent suspensions, like those shown, e.g., in Fig. 3.11, it is easy
to obtain the instantaneous center of rotation Bi of each wheel hub with respect to
the vehicle body. Another useful point is the center Ai of each contact patch.

The same procedure can be applied also to the MacPherson strut. The kinematic
scheme is shown in Fig. 3.12, while a possible practical design is shown in Fig. 3.13.
The MacPherson strut is the most widely used front suspension system, especially
in cars of European origin. It is the only suspension to employ a slider, marked
by number 2 in Fig. 3.12. Usually, the slider is the damper, which is then part of
the suspension linkage. To obtain the instantaneous center of rotation Bi of each
wheel hub with respect to the vehicle body it suffices to draw two lines, one along
joints 3 and 4, and the other through joint 1 and perpendicular to the slider (not to
the steering axis, which goes from joint 1 and 3, as also shown in Fig. 3.12).

In all suspension schemes, the intersection of lines connecting Ai and Bi on both
side of the same axle provides, for each axle, the so-called roll center Qi (Figs. 3.11
and 3.12). The signed distance of Qi from the road is named qi in Fig. 3.11. A roll
center below the road level would have qi < 0.

Therefore, a two-axle vehicle has two roll centers Q1 and Q2. The unique straight
line connecting Q1 and Q2 is usually called the roll axis (Fig. 3.11).

Some comments are in order here:
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Fig. 3.12 No-roll center for a
MacPherson strut

Fig. 3.13 Example of
MacPherson strut [3]

• the procedure just described to obtain the roll centers Qi is not ambiguous, pro-
vided the motion of the wheel hub with respect to the vehicle body is planar and
has one degree of freedom;

• points Ai are well defined and are not affected by the tire vertical compliance;
• a three-axle vehicle has three points Qi . Therefore, in general there is not a

straight line connecting Q1, Q2 and Q3. How to define, if possible, something
like a roll axis for a three-axle vehicle will be addressed in Sect. 3.13.

But what is the motivation for having defined the roll centers, and afterwards the
roll axis?

Figures 3.14 and 3.15 show how a lateral force Yi , if applied at Qi , is transferred
to the ground by the suspension linkage, with no intervention of the springs. There-
fore, a force applied at the roll center does not produce any suspension roll. This
is the key feature of the roll centers Qi , which should be better renamed no-roll
centers.

The roll axis is useful because the two lateral forces Y1 and Y2 must be like in
(3.96) for the global equilibrium to be fulfilled. A lateral force Y applied at any
point of the line connecting Q1 and Q2 is indeed equivalent to a force Y1 applied

www.cargeek.ir

www.cargeek.ir

http://www.cargeek.ir/
http://www.cargeek.ir/


3.8 Suspension First-Order Analysis 77

Fig. 3.14 Suspension
internal force distribution

at Q1 and a force Y2 applied at Q2 which obey (3.96). This is the motivation for
defining the roll axis. Again, a better name would be no-roll axis.

Summing up, application of a force to the vehicle body at any point of the roll
axis does not produce suspension roll. More precisely, a force (of any direction)
applied to the vehicle body and whose line of action goes through the roll axis may
affect the vehicle roll angle, but only because of tire deflections, with no contribution
from the suspensions. In addition, there may be variations of z1 and z2.

3.8.9 Forces at the No-roll Centers

Let us go back to a purely lateral force −Y j applied at P (not necessarily the center
of mass G), as shown in Fig. 3.11. Since the global equilibrium dictates in (3.96)
the values of Y1 and Y2, we have to decompose the lateral force −Y j into a force
−Y1j applied at the front no-roll center Q1 and a force −Y2j applied at the other
no-roll center Q2, plus a suitable couple.

There is a simple two-step procedure to obtain this result. First, consider that
−Y j at P is equivalent to the same force −Y j applied at point Q, on the no-roll axis

Fig. 3.15 Load transfer without suspension roll, but with vehicle raising
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right below P , plus a pure (horizontal) roll moment

Lbi = Y
(
h − qb
)
i, where qb = ab

2q1 + ab
1q2

ab
1 + ab

2

(3.101)

Then, it is obvious that the force −Y j applied at Q is exactly equivalent to a force
−Y1j applied at the front no-roll center Q1 and a force −Y2j applied at the other
no-roll center Q2. Indeed

Yqb = Y1q1 + Y2q2 (3.102)

and Y1a
b
1 = Y2a

b
2 .

This way we have decomposed the lateral force into two forces at the two no-
roll centers, each one of the magnitude imposed by the equilibrium equations, plus
a horizontal moment. It is important to note that it would be wrong to take the
shortest distance from P to the roll axis to compute the moment. It is precisely the
vertical distance (h − qb) that has to be taken as the force moment arm.

Summing up, a lateral force −Y j at P is totally equivalent to a lateral force −Y1j
at Q1 and another lateral force −Y2j at Q2, plus the horizontal moment Y(h − qb)i
(Fig. 3.11) applied to the vehicle body.

Figures 3.14 and 3.15 shows how each force Yi at Qi is transferred to the ground
by the suspension linkage, without producing any suspension roll. This is the key
feature of the roll center Qi . Quite remarkably, this is true whichever the direction
of the force there applied, and hence it is correct to speak of a (no-)roll center point
(at first, Fig. 3.15 might suggest the idea of a roll center height qi ).

The moment Y(h−qb) is the sole responsible of suspension roll. More precisely

Y
(
h − qb
)= ks

φ1
φs

1 + ks
φ2

φs
2 = ΔZL

1 t1 + ΔZL
2 t2 (3.103)

exactly like in (3.89).
The total lateral load transfer ΔZi on each axle is therefore given by

ΔZiti = (ΔZY
i + ΔZL

i

)
ti = Yiqi + ks

φi
φs

i = k
p
φi

φ
p
i (3.104)

that is by the sum of the part due to the suspension linkage and the part due to the
suspension springs (Eqs. (3.105) and (3.89)).

3.8.10 Suspension Jacking

However, no suspension roll does not mean no other effects at all. Indeed, there are
always lateral load transfers (Fig. 3.15)

ΔZY
i ti = Yiqi (3.105)

and hence also some rolling of the vehicle body related to the tire vertical deflec-
tions.
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Moreover, since the lateral forces exerted by the road on the left and right tires
are not equal to each other (they will be equal to Yi/2 ± ΔYi , where ΔYi depends
on the tire behavior), there is also a small rising zs

i of the vehicle body (Fig. 3.15)

zs
i = ΔYi

2bi

ks
zi
ci

= ΔYi

4qi

ks
zi
ti

(3.106)

associated with a small track variation Δti

Δti = −2bi

ci

zs
i = −4qi

ti
zs
i = −
(

4qi

ti

)2
ΔYi

ks
zi

(3.107)

and suspension jacking. The stiffness of the tires does not appear in (3.106) and
(3.107).

3.8.11 Roll Angle and Lateral Load Transfers

All relevant equations for the first-order suspension analysis have been obtained.
Solving them provides the relationship between Y and the total roll angle φ and,
more importantly, the relationship between the front and rear load transfers ΔZ1

and ΔZ2.
The main equations are gathered here to have them available at a glance:

Y = Y1 + Y2 (3.64′)

Yh = ΔZ1t1 + ΔZ2t2 (3.76′)

Y1 = Ya2

l
+ NY

l
= Yab

2

l
, Y2 = Ya1

l
− NY

l
= Yab

1

l
(3.70′)

φ = φs
1 + φ

p

1 , φ = φs
2 + φ

p

2 (3.98′)

ΔZ1t1 = k
p
φ1

φ
p

1 , ΔZ2t2 = k
p
φ2

φ
p

2 (3.99′)

ΔZ1t1 = Y1q1 + ks
φ1

φs
1, ΔZ2t2 = Y2q2 + ks

φ2
φs

2 (3.104′)

qb = a2q1 + a1q2

l
+ NY

Y

(
q2 − q1

l

)
= ab

2q1 + ab
1q2

l
� a2q1 + a1q2

l
(3.101′)

Y
(
h − qb
)= ks

φ1
φs

1 + ks
φ2

φs
2 (3.103′)

Yh = k
p
φ1

φ
p

1 + k
p
φ2

φ
p

2 (3.100′)

These equations are really of great relevance in vehicle dynamics.
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The front and rear roll angles due to the suspension and tire deflections can be
obtained solving the following system of equations

φ = φs
1 + φ

p

1 = φs
2 + φ

p

2

Y
(
h − qb
)= ks

φ1
φs

1 + ks
φ2

φs
2

Y1q1 + ks
φ1

φs
1 = k

p
φ1

φ
p

1

Y2q2 + ks
φ2

φs
2 = k

p
φ2

φ
p

2

(3.108)

The expressions are given here for the roll angles due to tire deflections

φ
p

1 = 1

k
p
φ1

kφ1kφ2

kφ

[
Y(h − qb)

kφ2

+ Y1q1

ks
φ1

+ Y1q1

ks
φ2

+ Y1q1 + Y2q2

k
p
φ2

]

φ
p

2 = 1

k
p
φ2

kφ1kφ2

kφ

[
Y(h − qb)

kφ1

+ Y2q2

ks
φ1

+ Y2q2

ks
φ2

+ Y1q1 + Y2q2

k
p
φ1

] (3.109)

and for the roll angles due to suspension (spring) deflections

φs
1 = 1

ks
φ1

kφ1kφ2

kφ

[
Y(h − qb)

kφ2

+ Y1q1

k
p
φ1

− Y2q2

k
p
φ2

]

φs
2 = 1

ks
φ2

kφ1kφ2

kφ

[
Y(h − qb)

kφ1

+ Y2q2

k
p
φ1

− Y1q1

k
p
φ1

] (3.110)

where

kφ = kφ1 + kφ2 = ks
φ1

k
p
φ1

ks
φ1

+ k
p
φ1

+ ks
φ2

k
p
φ2

ks
φ2

+ k
p
φ2

(3.111)

is the total roll stiffness, like in (3.86). Equations (3.109) and (3.110) show how
the tire and suspension stiffnesses interact with each other and with the first-order
suspension geometry (i.e., the no-roll axis position).

According to them, the total roll angle φ produced by a lateral force Y j applied
at P (Fig. 3.11) is given by

kφφ = Y
(
h − qb
)+ Y1q1

kφ1

k
p
φ1

+ Y2q2
kφ2

k
p
φ2

(3.112)

If qb is almost constant (i.e., q1 ≈ q2), then NY has little effect on the roll angle
φ (see also (3.117)). However, NY affects quite strongly the lateral load transfers,
because it redistributes the values of the lateral forces Y1 and Y2.
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3.8.12 Explicit Expressions of Lateral Load Transfers

Lateral load transfers ΔZi are among the most influential quantities in vehicle dy-
namics. They can be obtained, e.g., combining (3.99) and (3.109)

ΔZ1t1 = kφ1kφ2

kφ

[
Y(h − qb)

kφ2

+ Y1q1

ks
φ1

+ Y1q1

ks
φ2

+ Y1q1 + Y2q2

k
p
φ2

]

ΔZ2t2 = kφ1kφ2

kφ

[
Y(h − qb)

kφ1

+ Y2q2

ks
φ1

+ Y2q2

ks
φ2

+ Y1q1 + Y2q2

k
p
φ1

] (3.113)

which can also be recast as

ΔZ1 = 1

t1

[
kφ1

kφ

Y
(
h − qb
)+ Y1q1 + kφ1kφ2

kφ

(
Y2q2

k
p
φ2

− Y1q1

k
p
φ1

)]

ΔZ2 = 1

t2

[
kφ2

kφ

Y
(
h − qb
)+ Y2q2 + kφ1kφ2

kφ

(
Y1q1

k
p
φ1

− Y2q2

k
p
φ2

)] (3.114)

It is worth noting that, in a first-order vehicle analysis, the lateral load transfers
are linear functions of Y and NY , and hence of Y1 and Y2, that is

ΔZ1 = ξ11Y1 + ξ12Y2

ΔZ2 = ξ21Y1 + ξ22Y2
(3.115)

In these equations the interplay between stiffnesses and first-order suspension ge-
ometry is quite tricky. However, the simple Eq. (3.76) must always hold true.

Also interesting is to observe that, in a first-order analysis, the lateral load trans-
fers ΔZi do not depend on the roll angle φ, although roll motion had to be taken
into account to obtain ΔZi .

Since we are neglecting the inertial effects of roll motion, the lateral forces are
simply given by

Y = may = Y1 + Y2

Y1 = maya2

l
+ Jzṙ − (ΔX1t1 + ΔX2t2)

l
= maya2

l
+ NY

l

Y2 = maya1

l
− Jzṙ − (ΔX1t1 + ΔX2t2)

l
= maya1

l
− NY

l

(3.116)

Therefore, ultimately, the lateral load transfers ΔZi are (linear) functions of the
lateral acceleration ay , and, just a little, of the angular acceleration ṙ . Moreover,
in vehicle with limited slip differential or ESP, the contribution due to ΔXi can be
rather relevant.
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3.8.13 Lateral Load Transfers with Rigid Tires

If the tire vertical deflections are neglected (i.e., k
p
φi

→ ∞ and kφi
→ ks

φi
), all ex-

pressions simplify considerably. For instance, Eq. (3.112) becomes

kφφ = Y
(
h − qb
)

(3.117)

This is a most classical result. Similarly, a much simpler expression is obtained for
the lateral load transfers (3.104) or (3.113)

ΔZiti = kφi

kφ

Y
(
h − qb
)+ Yiqi = kφi

φ + Yiqi (3.118)

However, particularly in Formula cars, it may be not so safe to assume the tires
to be perfectly rigid in the vertical direction (they are not at all!). Inclusion of tire
compliance should be done according to (3.113), not by simply softening the sus-
pension stiffness. Indeed, loosely speaking the tires counteract the rolling moment
Yh, whereas the suspension springs have to deal with Y(h − qb). This point should
not be underestimated.

3.9 Dependent Suspensions

In a dependent suspension the two wheels of the same axle are rigidly connected to-
gether. Nowadays very few cars are equipped with dependent suspensions. Nonethe-
less, it is still a type of suspension which is widely employed in commercial vehicles
or the like, that is on vehicles that need to carry large loads compared to the vehicle
weight.

Perhaps, the most classical lateral location linkage for dependent suspensions
is the Panhard rod (also called Panhard bar or track bar), schematically shown in
Fig. 3.16. A rendering of a complete dependent suspension with Panhard rod is
shown in Fig. 3.17. The Panhard rod is a rigid bar running sideways in the same
plane as the axle, connecting one end of the axle to the car body on the opposite
side of the vehicle. The bar is attached at both ends with pivots that allow it to
swivel upwards and downwards only, so that the axle can move in the vertical plane
only. However, to effectively locate the axle longitudinally, it is usually used in
conjunction with trailing arms. Obviously, the rigid axle has two degrees of freedom
with respect to the vehicle body.

Most of the analysis developed for independent suspensions is applicable to de-
pendent suspensions as well. For instance, the suspension internal coordinates listed
at p. 69 are still meaningful (except track variation, which is obviously zero in the
present case). Vertical stiffness and roll stiffness are also well defined. The only
thing that needs to be addressed is the determination of the no-roll center Qi .

Following the method explained in Sect. 3.8.8, we apply a lateral force Yi , like
in Fig. 3.18 (top). This force can be decomposed into a force Hi , which is coun-
teracted by the Panhard rod, and a vertical force Vi , which must be counteracted
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Fig. 3.16 Planar scheme of a
dependent suspension with
Panhard rod

Fig. 3.17 Dependent
suspension with Panhard
rod [3]

by the springs, and whose line of action is located at a distance si from the vehicle
centerline (Fig. 3.18 (bottom)). It is easy to obtain

Hi = Yi

cosχi

Vi = Yi tanχi

si = h − qi

tanχi

and hence

Lb
i = Visi = Yi(h − qi)

(3.119)

where χi is the inclination of the Panhard rod. The lower χi , the better.
The moment Lb

i = Visi = Yi(h − qi) is the sole responsible of the vehicle body
roll, as shown in Fig. 3.19 (top), and the force Vi is the only responsible for the body
vertical displacement, as shown in Fig. 3.19 (bottom).

To have zero suspension roll we need zero moment, and this is possible if and
only if h = qi . Therefore, the no-roll center is point Qi in Fig. 3.18.

In any case, we have a small body vertical displacement, either upward or down-
ward, depending if we are turning left or right. The vertical displacement would
be zero if and only if χi = 0, which is clearly impossible in practice. Therefore,

www.cargeek.ir

www.cargeek.ir

http://www.cargeek.ir/
http://www.cargeek.ir/


84 3 Vehicle Model for Handling and Performance

Fig. 3.18 Force distribution and no-roll center Qi for a dependent suspension with Panhard rod

Fig. 3.19 Roll and vertical
displacement of a dependent
suspension with Panhard rod
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Fig. 3.20 Load distribution
due to the inertia of the
unsprung mass

the Panhard rod is a simple linkage, with the disadvantage of a certain degree of
asymmetry.

Of course, dependent suspensions do not exhibit suspension jacking, nor camber
variations.

3.10 Sprung and Unsprung Masses

In a vehicle like an automobile or a motorcycle, it is useful to distinguish between
sprung mass and unsprung mass.

The sprung mass ms is the portion of the vehicle’s total mass that is supported
above the suspension, thus including the body, frame, internal components, passen-
gers and cargo. On the other hand, wheels, wheel bearings, brake rotors, calipers go
into the unsprung mass mu since they are not above the suspension. Of course, the
total mass m = ms + mu.

The sprung mass is usually much bigger than the unsprung mass. Typically,
ms/mn = 5–10. Therefore, it is often not a bad approximation to set m � ms , as it
has been done in Sect. 3.8 to reduce the complexity of the model. However, a more
accurate analysis is not much more difficult.

The load distribution due to the inertial effects of mu is schematically shown in
Fig. 3.20. Basically, a centrifugal force Yu

i acts on each wheel. The equilibrium of
the whole system and of each suspension requires

2Yu
i rr = ΔZu

i ti

Y u
i rr − ΔZu

i ci = Lu
i

(3.120)

which yield

Yu
i rr

(
1 − ci

ti

)
= Lu

i (3.121)

The net effect is a small load transfer ΔZu
i and a very small suspension roll angle,

particularly if ci � ti like in a double wishbone suspension, as shown in Fig. 3.8.
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In practical terms, in (3.113) it suffices to set Y = msay , to modify Yi accord-
ingly, and to include an additional term mui

ayrr for each axle, where mui
is the

corresponding unsprung mass.

3.11 Vehicle Model for Handling and Performance

After quite a bit of work, we are now (almost) ready to set up our first-order vehicle
model for handling and performance analyses. Essentially, setting up a model means
collecting all relevant equations, their order being not important. Of course, a two-
axle vehicle is considered.

3.11.1 Equilibrium Equations

We have three in-plane equilibrium equations (3.64)

max = m(u̇ − vr) = X = X1 + X2 − 1

2
ρSCxu

2

may = m(v̇ + ur) = Y = Y1 + Y2

Jzṙ = N = Y1a1 − Y2a2 + ΔX1t1 + ΔX2t2

(3.64′)

where the tangential (grip) forces are defined in (3.59) with respect to the vehicle
frame (Fig. 3.7)

X1 = X11 + X12, X2 = X21 + X22

Y1 = Y11 + Y12, Y2 = Y21 + Y22

ΔX1 = X12 − X11

2
, ΔX2 = X22 − X21

2

ΔY1 = Y12 − Y11

2
, ΔY2 = Y22 − Y21

2

(3.59′)

and in (3.58) to exploit the contribution of each single tire

Ftij = Xij i + Yij j

where Xij = Fxij
cos(δij ) − Fyij

sin(δij )

Yij = Fxij
sin(δij ) + Fyij

cos(δij ) (3.58′)

We also have other four out-of-plane equilibrium equations (3.79), which link
the vertical loads acting on each tire to the vehicle motion
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Z11 = Fz11 = 1

2

[
mga2

l
− 1

2
ρaSaCz1u

2 − maxh − Jzxr
2

l

]
− ΔZ1

Z12 = Fz12 = 1

2

[
mga2

l
− 1

2
ρaSaCz1u

2 − maxh − Jzxr
2

l

]
+ ΔZ1

Z21 = Fz21 = 1

2

[
mga1

l
− 1

2
ρaSaCz2u

2 + maxh − Jzxr
2

l

]
− ΔZ2

Z22 = Fz22 = 1

2

[
mga1

l
− 1

2
ρaSaCz2u

2 + maxh − Jzxr
2

l

]
+ ΔZ2

(3.79′)

the lateral load transfers being as in (3.114)

ΔZ1 = 1

t1

[
kφ1

kφ

Y
(
h − qb
)+ Y1q1 + kφ1kφ2

kφ

(
Y2q2

k
p
φ2

− Y1q1

k
p
φ1

)]

ΔZ2 = 1

t2

[
kφ2

kφ

Y
(
h − qb
)+ Y2q2 + kφ1kφ2

kφ

(
Y1q1

k
p
φ1

− Y2q2

k
p
φ2

)] (3.114′)

where

qb = ab
2q1 + ab

1q2

ab
1 + ab

2

(3.101′)

with ab
1 and ab

2 defined in (3.70). Of course, we also have the following inequalities

√
X2

i + Y 2
i ≤ μpZi and Zi ≥ 0 (3.122)

Other six internal equilibrium equations involve the two roll angles due to the
pneumatic tires

φ
p

1 = 1

k
p
φ1

kφ1kφ2

kφ

[
Y(h − qb)

kφ2

+ Y1q1

ks
φ1

+ Y1q1

ks
φ2

+ Y1q1 + Y2q2

k
p
φ2

]

φ
p

2 = 1

k
p
φ2

kφ1kφ2

kφ

[
Y(h − qb)

kφ1

+ Y2q2

ks
φ1

+ Y2q2

ks
φ2

+ Y1q1 + Y2q2

k
p
φ1

] (3.109′)

the two roll angles due to the suspensions
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φs
1 = 1

ks
φ1

kφ1kφ2

kφ

[
Y(h − qb)

kφ2

+ Y1q1

k
p
φ1

− Y2q2

k
p
φ2

]

φs
2 = 1

ks
φ2

kφ1kφ2

kφ

[
Y(h − qb)

kφ1

+ Y2q2

k
p
φ1

− Y1q1

k
p
φ1

] (3.110′)

and the two track variations

Δti = −
(

4qi

ti

)2
ΔYi

ks
zi

(3.107′)

3.11.2 Constitutive (Tire) Equations

Each tire behaves according to its constitutive equations (2.72). Both the longitudi-
nal force Fxij

and the lateral force Fyij
depend on the vertical load Fzij

, the camber
angle γij , the translational slips σxij

and σyij
, and the spin slip ϕij

Fxij
= Fxij

(Fzij
, γij , σxij

, σyij
, ϕij )

Fyij
= Fyij

(Fzij
, γij , σxij

, σyij
, ϕij )

(2.72′)

3.11.3 Congruence (Kinematic) Equations

Congruence equations are, by definition, a link between kinematic quantities. In a
vehicle they relate the vehicle motion to the tire kinematics (translational slips, spin
slips, camber angles, steering angles).

The longitudinal and lateral slips were defined for a single wheel with tire in
(2.55) and (2.56), respectively. For the four wheels of a vehicle they were given in
(3.45) and (3.46):

• longitudinal slips:

σx11 = [(u − rt1/2) cos(δ11) + (v + ra1) sin(δ11)] − ω11r1

ω11r1

σx12 = [(u + rt1/2) cos(δ12) + (v + ra1) sin(δ12)] − ω12r1

ω12r1

σx21 = [(u − rt2/2) cos(δ21) − (v − ra2) sin(δ21)] − ω21r2

ω21r2

σx22 = [(u + rt2/2) cos(δ22) − (v − ra2) sin(δ22)] − ω22r2

ω22r2

(3.45′)
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• lateral slips:

σy11 = (v + ra1) cos(δ11) − (u − rt1/2) sin(δ11)

ω11r1

σy12 = (v + ra1) cos(δ12) − (u + rt1/2) sin(δ12)

ω12r1

σy21 = (v − ra2) cos(δ21) − (u − rt2/2) sin(δ21)

ω21r2

σy22 = (v − ra2) cos(δ22) − (u − rt2/2) sin(δ22)

ω22r2

(3.46′)

According to (2.73), the rolling radii ri should depend on the vertical load and the
camber angle. However, in a car such dependence is so weak that they can be safely
assumed as constant.

Suspension roll angles φs
i may affect the steering angles δij of the wheels. It is

the so-called roll steer. This feature is very important in vehicle handling and can
be modelled by means of another set of kinematic equations

δij = δij

(
δv,φ

s
i

)
� δ0

ij + δvτij + Υijφ
s
i (3.123)

where δ0
ij = δij (0,0) is the toe-in (or toe-out) contribution, δv is the steering wheel

rotation (as imposed by the driver) and τij is the gear ratio of the whole steering
system for each wheel. Most cars have τ2j = 0, that is no direct steering of the rear
wheels. The roll steer contribution Υijφ

s
i can be given as linear functions of the

suspension roll angles φs
i .

Ultimately, we have that

σxij
= σxij

(
v, r, u, δv,φ

s
i ,ωij

)
σyij

= σyij

(
v, r, u, δv,φ

s
i ,ωij

) (3.124)

The spin slip was defined for a single wheel with tire in (2.57). For the four
wheels of a car they are

ϕij = − r + δ̇ij + ωij sinγij (1 − εi)

ωij ri
(3.47′)

However, even in a Formula 1 car, the yaw rate r can be as high as 1 rad/s, that is
60◦/s, while δ̇ij is about 4 times smaller. The bigger contribution comes from the
last term, which ranges between 1 and 5 rad/s. Therefore,

ϕij � − sinγij (1 − εi)

ri
(3.125)
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which shows that, approximately, the spin slips affect the tire behavior like the cam-
ber angle. The camber reduction factor εi can be assumed as constant (cf. (2.73)).

Very important is the kinematic link between the suspension internal coordinates
and the camber variations

Δγi1 ≈ −
(

qi − bi

bi

)
φs

i + φ
p
i + 1

2bi

Δti

Δγi2 ≈ −
(

qi − bi

bi

)
φs

i + φ
p
i − 1

2bi

Δti

(3.83′)

Different suspensions with the same no-roll center behave differently.

3.11.4 Principles of Any Differential Mechanism

The non-driven wheels of a car can spin independently since there is no connec-
tion between them. But the driven wheels must be linked together so that a single
engine and transmission can turn both wheels. The mechanism that links the two
driven wheels of the same axle is called the differential. Basically, it is a device
that splits the engine power two ways, allowing each output wheel to spin at a dif-
ferent speed [2]. But this is too loose an explanation. In this section the equations
governing any differential are discussed in detail.

Regardless of the specific mechanical design, a differential is essentially a hous-
ing with two aligned shafts that must fulfill one very specific requirement: the two
shafts must have opposite angular speeds with respect to the housing, as shown in
Fig. 3.21, bottom.

Let ωl , ωh and ωr be the absolute angular speeds of the left shaft, of the housing
and of the right shaft, respectively (see Fig. 3.21 although the subscripts are dif-
ferent. Their meaning will be given shortly). Moreover, let Ml , Mh and Mr be the
corresponding moments (torques) applied to them. All angular speeds are always
positive, while the moments must be such that

MlMr ≥ 0 and (MlMr)Mh ≤ 0 (3.126)

as will be shown in a while.
Every differential is governed by the following set of three equations:

ωl − ωh

ωr − ωh

= ω̂l

ω̂r

= −1

Mh + Ml + Mr = 0

Mhωh + Mlωl + Mrωr = Wd

(3.127)

where Wd > 0 is the power lost inside the housing and
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Fig. 3.21 Angular speeds
and moments in any
differential mechanism. Top:
absolute speeds, bottom:
relative speeds

ω̂l = ωl − ωh and ω̂r = ωr − ωh (3.128)

are the relative angular speeds of the shafts with respect to the housing, usually very
small. As already stated, under any working conditions we always have ω̂l = −ω̂r .
The first equation in (3.127) is the Willis formula, the second equation is the torque
balance and the third equation is the power balance.

The first equation can be better rewritten as

ωl + ωr = 2ωh (3.129)

which shows a very important kinematic feature: if one wheel rotates faster than the
housing, the other wheel must rotate slower. Let us call ωf and ωs these angular
speeds, respectively, and Mf and Ms the corresponding torques (Fig. 3.21). Since
the differential has two degrees of freedom, the Willis formula alone cannot say how
big is the difference between the two rotation speeds ωf and ωs .

Combining the last two equations in (3.127), we get the internal power balance
of the housing

Ml(ωl − ωh) + Mr(ωr − ωh) = Mlω̂l + Mrω̂r

= Mf (ωf − ωh) + Ms(ωs − ωh) = Mf ω̂f + Msω̂s

= Wi − Wo = Wd

(3.130)
where Wi is the input power and Wo is the output power, both assumed as positive.
Obviously, by definition

(ω̂f = ωf − ωh) > 0 and (ω̂s = ωs − ωh) < 0 (3.131)

with ω̂f = −ω̂s .
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Fig. 3.22 Longitudinal
forces during power-on in a
vehicle equipped with a
limited slip differential:
(a) low lateral acceleration,
(b) high lateral acceleration

The knowledge of the internal efficiency ηh of the housing is very helpful, since

ηh = Wo

Wi

= Wi − Wd

Wi

≤ 1 (3.132)

Instead of ηh, it is common practice to use the Torque Bias Ratio (TBR) which is
exactly equal to 1/ηh

TBR = 1

ηh

(3.133)

There are two possible working conditions:

(1) positive torque Mh from the engine (power-on), which means that both Mf and
Ms are negative (for the differential, but positive for the wheels). Therefore,
−Mf ω̂f = Wo and Msω̂s = Wi (Fig. 3.21);

(2) negative torque Mh from the engine (power-off), which means that both Mf

and Ms are positive (for the differential, but negative for the wheel). Therefore,
−Msω̂s = Wo and Mf ω̂f = Wi .

Inserting these results in (3.132) we get

power-on ηh = −Mf ω̂f

Msω̂s

= Mf

Ms

≤ 1

power-off ηh = −Msω̂s

Mf ω̂f

= Ms

Mf

≤ 1

(3.134)

As shown in Fig. 3.22, the outcome of a power-on condition strongly depends on
the vertical loads acting on the two wheels. As a rule of thumb, the slower wheel has
always the higher torque.7 The power-off condition, instead, is more predictable, as
shown in Fig. 3.23.

7Just consider that, since ωh > ωs , both Ms and ω̂s are negative and hence their product is positive,
meaning input power for the differential mechanism inside the housing. Consistently, Mf ω̂f < 0,
which is an output power for the differential mechanism.
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Fig. 3.23 Longitudinal
forces during power-off
(coasting mode) in a vehicle
equipped with a limited slip
differential (not locked)

For the purpose of practical implementation, it is useful to rewrite (3.134) in
a more compact way. Let ς = sign(Mh); therefore ς = 1 during power-on and
ς = −1 during power-off. We have that

Mf = η
ς
hMs (3.135)

Moreover, let ϕ = sign(ωr − ωl). We obtain

Mr = (ης
h

)ϕ
Ml (3.136)

which covers all cases.
Most road cars are equipped with a so-called open differential, which has ηh � 1

and hence Ml = Mr under all working conditions.
On the other hand, off-road vehicles, race cars and other sports cars have a limited

slip differential (also called self-locking). A low efficiency ηh (and hence a high
TBR) can be achieved in several ways, but all rely on friction inside the housing.
There are differentials with constant ηh (typically ηh � 1/4), others which have
some sort of clutches and have ηh sensitive to torque.

Many limited slip differentials which employ clutches behave like a totally locked
differential whenever the difference ΔM = |Ml − Mr | is below a threshold value.
In that case, there is no differential effect and both wheels rotate at the same angular
speed ωl = ωr = ωh, the moments being any, provided they fulfill the equation Mh+
Ml + Mr = 0. For instance, it is even possible to have the two longitudinal forces
pointing in opposite directions, as shown in Fig. 3.24.

Summing up, the type of differential mechanism affects the handling behavior
through the following equations:

open differential: Mi1 = Mi2, and hence ΔXi = 0;

locked differential: ωi1 = ωi2, and hence, in general, ΔXi �= 0;

limited slip differential: Mi1 �= Mi2 and ωi1 �= ωi2 (more precisely, during power-
on |Mf | = ηh|Ms |, with ηh < 1, that is the slower wheel receives by the engine
the higher torque).
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Fig. 3.24 Possible
longitudinal forces in a
vehicle equipped with a
locked differential

3.12 The Structure of This Vehicle Model

The equations listed in the former section may look a bit complicated. It is important
to observe that there are only three differential equations, namely the equilibrium
equations. All other equations are algebraic. This means that, ultimately, the model
is governed by three equations of motion, all first-order differential equations, in the
unknown functions u(t), v(t) and r(t).

However, it is advisable to extract simplified models tailored for specific vehicles
and/or operating conditions. The goal is to obtain models simple enough for training
human beings in learning and understanding vehicle dynamics. Of course, we will
pay attention to state the additional assumptions needed for the simplified model to
be meaningful.

A list of possible options can be:

(1) braking on a straight road with uniform grip;
(2) accelerating on a straight road with uniform grip;
(3) handling at constant and given speed u:

(a) vehicle with open differential;
(b) vehicle with locked differential;
(c) vehicle with limited slip differential;
(d) vehicle without wings (no downforce);
(e) vehicle with wings.

In the next chapters, most of these options will be elaborated in detail. In addition,
we will develop vehicle models for studying ride and road holding, and we will
extend the handling model to take into account roll motion. A final chapter will
address what happens in the contact patch between tire and road.

But there is one more topic to be discussed here.
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Fig. 3.25 Triangle of possible no-roll points (x2 < 0 and x3 < 0)

3.13 Three-Axle Vehicles

Most vehicles have two axles, but many have three (or more) [6, 7]. Just consider
trucks. As we have already discussed, each axle has a no-roll center. So there are
three no-roll centers, each at a differente height, in general (Fig. 3.25). But what
about the no-roll axis? As a matter of fact, a straight line is defined by two points,
not three!

It is quite amazing that such an (apparently) fundamental concept like the no-roll
axis shows to be totally meaningless for an important class of vehicles. But what
is even more surprising is that the vehicle dynamics community does not show any
embarrassment for having grounded most of its theory on such a weak concept.

Having said that, let us address the problem with open mind. First of all, consider
that the vehicle knows nothing about no-roll axis and the like. It behaves according
to the fundamental laws of dynamics. And for sure, the vehicle body (assumed rigid)
has an instantaneous screw axis, but it has nothing to do with the roll axis as com-
monly defined.

Actually, the really big difference between a vehicle with two and a vehicle with
three (or more) axles is that with two axles we have in many respects a statically de-
terminate (or isostatic) structure, whereas with three or more axles we have always
to deal with a statically indeterminate (or hyperstatic) structure.

For instance, the static vertical loads in a two-axle vehicle can be obtained by the
equilibrium equations only and are not affected by the suspension stiffnesses

Z0
1 = mga2

l
, Z0

2 = mga1

l
(3.75′)

On the other hand, with three axles the static vertical loads cannot be obtained by
the equilibrium equations only, that is without taking into account the suspension
and tire vertical stiffnesses.
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Let, x1 = a1, x2 = −a2 and x3 be the longitudinal coordinate of each axle in the
vehicle reference frame. The three static vertical loads on each axle must obey to
the following equilibrium equations (in case of negligible aerodynamic loads)

0 = Z0
1 + Z0

2 + Z0
3 − mg

0 = Z0
1x1 + Z0

2x2 + Z0
3x3

(3.137)

We have two equations with three unknowns. Therefore, there are infinitely many
solutions. For instance, we could set X3 = 0 by raising the two wheels of the third
axle, thus restoring the common two-axle architecture.

Exactly the same observation applies to the lateral forces Yi : there are infinitely
many possible combinations of lateral forces Y1, Y2 and Y3 to balance Y .

Notwithstanding these difficulties, the analysis to define (and measure) the roll
and vertical stiffnesses ks

φi
, k

p
φi

, ks
zi

, k
p
zi

still applies entirely. We can then proceed to
collect all relevant equations, like in Sect. 3.8.11.

Y = Y1 + Y2 + Y3 (3.138)

YxN = Y1x1 + Y2x2 + Y3x3 (3.139)

Yqb = Y1q1 + Y2q2 + Y3q3 (3.140)

Yh = ΔZ1t1 + ΔZ2t2 + ΔZ3t3 (3.141)

mg = Z1 + Z2 + Z3 (3.142)

Xh = −(Z1x1 + Z2x2 + Z3x3) (3.143)

ΔZiti = k
p
φi

φ
p
i (3.144)

ΔZiti = Yiqi + ks
φi

φs
i (3.145)

Z0
i − Zi = k

p
zi
z
p
i (3.146)

Z0
i − Zi = ks

zi
zs
i − ΔYi

4qi

ti
(3.147)

φ = φs
i + φ

p
i (3.148)

z1 − z3

x1 − x3
= z1 − z2

x1 − x2
(3.149)

which imply

Yh = k
p
φ1

φ
p

1 + k
p
φ2

φ
p

2 + k
p
φ3

φ
p

3 (3.150)

Y
(
h − qb
)= ks

φ1
φs

1 + ks
φ2

φs
2 + ks

φ3
φs

3 (3.151)

It is worth noting that the suspension jacking, as in (3.106), affects the vertical
loads because the system is hyperstatic. Therefore it also interacts with lateral load
transfers, with the lateral forces and, ultimately, with roll motion. In other words, in
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a three-axle vehicle there is interaction between suspension jacking and roll angles.
It was not so in a two-axle vehicle.

Moreover, under a given lateral force Y , the roll angles are also affected by the
amount of grip of each axle, and vice versa.

But maybe the most interesting and, somehow, surprising result is that, as shown
in Fig. 3.25, in a three-axle vehicle the no-roll axis must be replaced by a triangle of
possible no-roll points. The three no-roll centers Qi are the vertices of this triangle
of possible no-roll points. The actual height qb depends not only on the heights qi

of the no-roll centers, but also on the value of each lateral force Yi .
This result generalizes the concept of no-roll axis and confirms that sentences like

“The vehicle has two roll centers about which it rolls when cornering” are incorrect.

3.14 Summary

This is the main chapter of this book, the core of it. Therefore it covers a lot of
topics.

At the beginning, the simplifying assumptions to formulate a simple, yet signifi-
cant, vehicle model have been listed. Then the kinematics of the vehicle as a whole
has been described in detail, followed by the kinematics of each wheel with tire. For-
mulation of the constitutive (tire) equations and of the global equilibrium equations
has been the following step.

A lot of work has been devoted to load transfers, which has required an in-depth
suspension analysis. This has led to the definition of suspension and vehicle internal
coordinates, of no-roll centers and no-roll axis, for both independent and dependent
suspensions. The case of three-axle vehicles has been also considered.

In the end, the vehicle model for handling and performance has been formulated
in a synthetic, yet precise way. A general description of the mechanics of both open
and limited-slip differential mechanisms has been included.

3.15 List of Some Relevant Concepts

p. 49 a vehicle can have a lateral velocity v, although it is normally much lower
than the forward velocity u;

p. 50 the lateral and forward velocity cannot be expressed as derivatives of other
functions;

p. 52 the velocity center C is not, in general, the center of curvature;
p. 69 for each axle, four internal coordinates are necessary to monitor the suspen-

sion conditions with respect to a reference configuration;
p. 78 application of a force to any point of the no-roll axis does not produce sus-

pension roll;
p. 78 no suspension roll does not mean no other effects at all. There can be suspen-

sion jacking;
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p. 95 in a three-axle vehicle, the no-roll axis must be replaced by a triangle of
possible no-roll points;

p. 92 a fundamental parameter in a differential mechanism is its internal effi-
ciency ηh.
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Chapter 4
Braking Performance

Driving a vehicle involves, among other things, braking [1]. Fortunately, most of the
times, we brake very softly, far from the braking performance limit. Most drivers,
perhaps, never need to experience the limit braking performance of their car in ev-
eryday traffic. However, engineers must know very well the mechanics of braking a
vehicle, to allow it to stop as soon as possible in case of emergency. Actually, this
problem has been somehow mitigated by the advent of ABS systems [2], which now
equip every car. However, many race cars do not have ABS and hence brake design
and balance is still a relevant topic in vehicle dynamics.

By brake balance or bias, we mean how much to brake the front wheels with
respect to the rear wheels. The goal is to stop the vehicle as soon as possible, but
avoiding wheel locking. Cars have only one pedal to brake all wheels and brake
balance is left to the car. By the way, wheel locking should be avoided because, in
order of importance:

(1) the steering/directional capability is totally impaired;
(2) the grip is lower;
(3) energy dissipation switches from the brakes to the contact patches and tires get

damaged.

On the other hand, almost all motorcycles and bicycles have independent brake
commands for the front wheel and for the rear wheel, thus leaving to the rider the
duty of brake balance. Many bicyclists fear using the front brake because they be-
lieve it, in contrast to the rear brake, might cause the bicycle to overturn. Actually,
overturning a bicycle with the front brake is much harder than it seems. Not using
the front brake is a bad habit, since it drastically impairs the brake performance.

4.1 Pure Braking

As anticipated, we extract tailored models from the fairly general vehicle model
developed in Chap. 3.

M. Guiggiani, The Science of Vehicle Dynamics, DOI 10.1007/978-94-017-8533-4_4,
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100 4 Braking Performance

When braking on a flat, straight road, with uniform grip, we know beforehand
that

Y = 0

N = 0

ΔXi = 0

ΔZi = 0

(4.1)

that is, there are no lateral forces, no yaw moment and no lateral load transfers.
Accordingly, the vehicle goes straight, with no lateral acceleration and yaw rate
(and also no lateral velocity)

ay = 0

ṙ = 0

v = 0

r = 0

(4.2)

Other quantities are usually very small. In particular, if the wheels of the same
axle have a bit of convergence (also called toe-in), that means that there are small
steering angles and, accordingly, very small lateral slips. Similarly, if the wheels of
the same axle have some camber, the tires are subject to a small spin slip:

δij � 0

σyij
� 0

ϕij � 0

(4.3)

At first, all these quantities can be set equal to zero.

4.2 Vehicle Model for Braking Performance

A simple, yet significant, model to study the limit braking performance of a road
vehicle is shown in Fig. 4.1. We are dealing here with road vehicles, without signif-
icant aerodynamic downforces.

We suppose to brake on a flat and straight road, with uniform grip. Therefore, the
vehicle goes straight. Moreover, we assume to apply a constant force to the brake
pedal. Therefore, pitch oscillations are negligible.

Summing up, we can employ the two-dimensional model shown in Fig. 4.1. The
vehicle is just a single rigid body with mass m, moving horizontally with forward
speed u and forward acceleration u̇ < 0. Beside its own weight mg, it receives from
the road two vertical forces Z1 and Z2, one per each axle, and two longitudinal
(braking) forces X1 and X2, again one per each axle.
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Fig. 4.1 Vehicle model for braking performance

In this chapter only we assume X1 and X2 to be positive if directed like in
Fig. 4.1. It is more convenient to deal with positive quantities.

4.3 Equilibrium Equations

The three equilibrium equations are readily obtained from Fig. 4.1

mu̇ = −(X1 + X2)

0 = Z1 + Z2 − mg

0 = (X1 + X2)h − Z1a1 + Z2a2

(4.4)

which must be supplemented by the following inequalities

|Xi | ≤ μx
pZi and Zi ≥ 0 (4.5)

where μx
p is the global longitudinal friction coefficient defined in (2.76). It is quite

obvious that the braking forces cannot exceed the traction limit, nor the vertical
forces be negative. For brevity, we will use the symbol μ for μx

pin this chapter.
The aerodynamic drag Xa has not been included because it is really small com-

pared to the braking forces.

4.4 Longitudinal Load Transfer

When going at constant speed, that is with u̇ = 0, we have from (4.4) (or, directly,
from (3.75)) that the static loads on each axle are

Z0
1 = mga2

l
, Z0

2 = mga1

l
(4.6)
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102 4 Braking Performance

During braking with u̇ < 0, the two loads change, although their sum must be
constantly equal to the vehicle weight mg. We have the so-called longitudinal load
transfer ΔZ

Z1 = Z0
1 + ΔZ and Z2 = Z0

2 − ΔZ (4.7)

where (cf. (3.74))

ΔZ = −mh

l
u̇ (4.8)

with u̇ < 0. The front axle is subject to a higher load, while the rear axle to a lower
load. It is worth noting that the load transfer does not depend on the type of suspen-
sions.

We have overturning of the vehicle if Z2 = 0, that is if

|u̇| = a1g/h (4.9)

This condition is never met in cars, whereas it may limit the brake performance in
some motorcycles.

4.5 Maximum Deceleration

The best braking performance |u̇|max is obtained if both axles brake at their traction
limit, that is if

X1 = μZ1 and X2 = μZ2 (4.10)

From the equilibrium equations (4.4), it is straightforward to obtain the limit decel-
eration

|u̇| = μg (4.11)

Of course, the maximum deceleration is the minimum between (4.9) and (4.11)

|u̇|max = min(μg,a1g/h) (4.12)

Cars have μ < a1/h, whereas in some motorcycles it can be the other way around.
Here we are mainly dealing with cars, and therefore we have

|u̇|max = μg (4.13)
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4.6 Brake Balance

When braking at the best braking performance, that is with u̇ = −μg, the longitudi-
nal forces are

X1P
= μZ1P

= μ

(
Z0

1 + mh

l
μg

)
= μ

mg

l
(a2 + μh)

X2P
= μZ2P

= μ

(
Z0

2 − mh

l
μg

)
= μ

mg

l
(a1 − μh)

(4.14)

The brake balance (or brake bias) βP to have the best braking performance is
promptly obtained as

βP = X1P

X2P

= Z1P

Z2P

= a2 + μh

a1 − μh
(4.15)

Typical values in road cars are βP � 2 on dry asphalt (μ � 0.8) and βP � 1.5 on
wet asphalt (μ � 0.4). More commonly the same concepts would be expressed as
front/rear = 66/33 and front/rear = 60/40, respectively.

4.7 All Possible Braking Combinations

If the best braking performance is our ultimate goal, we should also look around
to see what happens if we employ a brake balance not equal to βP . All possible
braking combinations can be visualized in a simple, yet very useful, figure.

First solve the equilibrium equations (4.4) with X1 = μZ1, thus getting

Z1 = X1

μ
= Z0

1 + h

l
(X1 + X2) (4.16)

and hence

X1 = μ

(
Z0

1 + h
l
X2

1 − μh
l

)
(4.17)

This is the relationship between X1 and X2 to have limit (threshold) braking at the
front wheels.

Similarly, solve the equilibrium equations (4.4) with X2 = μZ2, thus getting

X2 = μ

(
Z0

2 − h
l
X1

1 + μh
l

)
(4.18)

This is the relationship between X1 and X2 to have limit (threshold) braking at the
rear wheels.

In the plane (X2,X1) we can now draw the two straight lines (4.17) and (4.18),
as shown in Fig. 4.2. The region inside the two lines contains all possible (admis-
sible) braking combinations. Trying to trespass the upper line means front wheels
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Fig. 4.2 Area of all
admissible braking
combinations

Fig. 4.3 Area of all
admissible braking
combinations with indication
of some particular cases

lock-up. Trying to trespass the right line means rear wheels lock-up. Point P is the
combination of braking forces X1P

and X2P
(best performance).

Points with the same level of deceleration all belong to straight lines with slope
45◦, that is lines with constant X1 + X2 = −mu̇. The maximum deceleration corre-
sponds to the line passing through point P . Braking with balance βP means moving
along the line OP .

Some other relevant cases are shown in Fig. 4.3. Area 1 corresponds to low decel-
erations. So small that they can be obtained with any balance between front and rear
braking forces (even only a rear braking force X20 ). Area 2 needs necessarily some
braking force at the front wheels, but even the front wheels alone, with a braking
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Fig. 4.4 Area of all
admissible braking
combinations for three
different grip coefficients
(left) and parabola of limit
points (right)

force X10 , would do (front/rear = 100/0). Area 3, that is high decelerations, require
intervention of both axles. The higher the deceleration, the narrower the range A–B .

To complete our discussion we have to address the effects of changing the grip
coefficient μ and/or the position of G, that is a1/a2, and maybe h.

4.8 Changing the Grip

The formulation developed so far includes the grip coefficient as a parameter. There-
fore, we have already obtained all formulas to deal with different values of μ. To
understand what happens it is helpful to draw the admissible region for, say, three
different values μ1 < μ2 < μ3 of the grip coefficient, as shown in Fig. 4.4.

Let us assume that our car has a brake balance that follows line OP2, that is
optimized for μ = μ2. If the grip is lower there will be less load transfer ΔZ and
a lower brake balance would be optimal. If we still follow line OP2, we exit the
admissible region at point A, that is for a deceleration lower than μ1g and with the
front wheels at lock-up. It can be shown that the deceleration is equal to ε1μ1g, with
the braking efficiency ε1 < 1 given by

ε1 = a2

a2 + h(μ2 − μ1)
, if μ1 < μ2 (4.19)

Efficiency lower than one is also obtained when the out-of-balance is due to a
higher value of the grip coefficient. As shown in Fig. 4.4, we exit the admissible
region at point B , which is not optimal. Rear wheels are about to lock up and the
deceleration is equal to ε3μ3g, with the braking efficiency ε3 < 1 given by

ε3 = a1

a1 + h(μ3 − μ2)
, if μ3 > μ2 (4.20)
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Fig. 4.5 Area of admissible
braking combinations for two
different weight distributions

Also shown in Fig. 4.4 is the parabola that collects all vertices P when varying
the coefficient μ. Point P located on the X1 axis means that maximum deceleration
is limited by overturning.

4.9 Changing the Weight Distribution

The longitudinal position of G affects the static load distribution. Therefore, it af-
fects the brake balance, but not the maximum deceleration μg. Accordingly, we get
an admissible region like in Fig. 4.5, with a new vertex P̂ still on the same line at
45◦, and with sides parallel to those of the original region.

4.10 A Numerical Example

A numerical example may be useful to understand better the braking performance
of a road car. We take a small car with the following features: mass m = 1000 kg,
wheelbase l = 2.4 m, a1 = a2 = l/2, height of the center of mass h = 0.5 m.

Assuming a grip coefficient μ = 0.8, the maximum deceleration is vehicle inde-
pendent and it is equal to |u̇|max = μg = 7.84 m/s2, with g = 9.81 m/s2.

According to (4.6), the static vertical loads for both axles are Z0
1 = Z0

2 = 4900 N.
The load transfer at maximum deceleration is ΔZ = 1633 N. Therefore, the vertical
loads acting on each axle are Z1P

= 6533 N and Z2P
= 3267 N, which means a

brake balance βP = 2. This is the optimal value for that car if μ = 0.8.
Should the grip coefficient drop to 0.4 because, e.g., of rain, we would end up

with a braking efficiency ε1 = 0.86. An increase of the grip coefficient up to 1.2
would still bring a reduced braking efficiency ε2 = 0.86.
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Fig. 4.6 Vehicle model for braking performance of a Formula car

4.11 Braking Performance of Formula Cars

Formula cars have aerodynamic wings that provide very high downforces at high
speed, as briefly explained in Sect. 3.5.2. These loads affect braking pretty much.
The first, obvious, effect is that the maximum longitudinal deceleration is speed
dependent. In a Formula 1 car it can be up to 5g at 300 km/h, although the physical
grip μ rarely exceeds 1.6. The second, perhaps less obvious, effect is that also the
optimal brake balance is speed dependent.

4.11.1 Equilibrium Equations

The equilibrium equations (4.4) must be supplemented by the aerodynamic forces.
According to Sect. 3.5.2 and as shown in Figs. 3.6 and 4.6, the aerodynamic loads
are equivalent to three forces: a drag force Xa at road level and two vertical forces
Za

1 and Za
2 acting directly on the front and rear axles, respectively. Therefore, the

equilibrium equations become

mu̇ = −(X1 + X2) − Xa

0 = Z1 + Z2 − mg − Za
1 − Za

2

0 = (X1 + X2 + Xa)h − (Z1 − Za
1

)
a1 + (Z2 − Za

1

)
a2

(4.21)

Unlike in (3.64) and (3.65), here not only we assume X1 and X2 to be positive if
directed like in Fig. 4.6, that is to be indeed braking forces, but also the aerodynamic
vertical loads Za

1 and Za
2 are assumed to be positive if directed downward, again like

in Fig. 4.6.
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We recall that (cf. (3.56) and (3.57))

Xa = 1

2
ρaCxSau

2 = ξu2

Za
1 = 1

2
ρaCz1Sau

2 = ζ1u
2

Za
2 = 1

2
ρaCz2Sau

2 = ζ2u
2

(4.22)

where, as common practice among race engineers, Cx > 0 and Czi > 0 (again, un-
like in the other, more general, chapters).

For simplicity, although not strictly true, we assume all aerodynamic coefficients
to be speed independent.

4.11.2 Longitudinal Load Transfer

The longitudinal load transfer ΔZ is not directly affected by the aerodynamic loads,
in the sense that it is still given by

ΔZ = −mh

l
u̇ (4.23)

with u̇ < 0, exactly like in (4.8). When braking, the front axle is subject to a higher
load, while the rear axle to a lower load. It is a purely inertial effect.

The vertical loads on each axle are therefore given by the static loads, plus the
aerodynamic (speed dependent) loads, plus or minus the load transfer

Z1 = mga2

l
+ ζ1u

2 + ΔZ

Z2 = mga1

l
+ ζ2u

2 − ΔZ

(4.24)

4.11.3 Maximum Deceleration

The maximum deceleration is promptly obtained by assuming that both axles are at
their limit braking conditions, that is X1 = μZ1 and X2 = μZ2

|u̇|max = μ

(
g + ζ1 + ζ2

m
u2
)

+ ξ

m
u2 (4.25)

This formula generalizes (4.13). Of course |u̇|max is very speed dependent.
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4.11.4 Braking Balance

Having the right brake balance βP is very important for lap performance:

βP = (a2 + hμ)gm + u2[(a1 + a2)ζ1 + hξ + h(ζ1 + ζ2)μ]
(a1 − hμ)gm + u2[(a1 + a2)ζ2 − hξ − h(ζ1 + ζ2)μ] (4.26)

which generalizes (4.15). As expected, now βP is speed dependent, unless

(a2 + hμ) = (a1 − hμ) (4.27)

and
[
(a1 + a2)ζ1 + hξ + h(ζ1 + ζ2)μ

]= [(a1 + a2)ζ2 − hξ − h(ζ1 + ζ2)μ
]

(4.28)

which can be recast as

(a1 + a2 + 2hμ)Cz1 + 2hμCx = (a1 + a2 − 2hμ)Cz2 (4.29)

Although it is not possible (or not convenient) to fulfill these conditions, they can
be taken as something to be considered during set-up.

4.11.5 Typical Formula 1 Braking Performance

A typical braking performance of a Formula 1 car is shown in Fig. 4.7. The decel-
eration grows suddenly up to about 38 m/s2. Then, as the speed u decreases, also
the aerodynamic load decreases, thus requiring the driver to gradually release the
brake pedal. Meanwhile, the car is already negotiating the curve, as shown by the
lateral acceleration and wheel steer angle. Also shown in Fig. 4.7 is the acceleration
(ax > 0) when the car exits the curve.

It is interesting to compare the total acceleration
√

a2
x + a2

y (lower line in Fig. 4.8)

with the potential maximum acceleration (4.25) (upper line in Fig. 4.8). Whenever
possible, the driver tries to stay as close as possible to the limit. This can be done in
all curves that are grip limited. Of course, not in those curves that are speed limited.

4.12 Summary

The goal of this chapter has been to understand how to stop a vehicle as soon as
possible, avoiding wheel locking. This result can be achieved only if the vehicle
has the right brake balance. Unfortunately, brake balance is affected by the value of
the grip and by the position of the center of mass. This topic has been addressed in
detail, both analytically and graphically, through the region of all possible braking
conditions. The peculiarity of the braking performance of a Formula car has been
also discussed.
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Fig. 4.7 Typical braking
performance of a Formula 1
car

4.13 List of Some Relevant Concepts

p. 102 longitudinal load transfer do not depend on the type of suspensions;
p. 102 maximum deceleration is limited by either grip or overturning (supposing

brakes are powerful enough);
p. 103 brake balance depends on grip and weight distribution;
p. 104 all possible braking combinations can be represented by a simple figure;

Fig. 4.8 Comparison between the total acceleration (lower line) and the potential maximum ac-
celeration (upper line) of a Formula 1 car

www.cargeek.ir

www.cargeek.ir

http://www.cargeek.ir/
http://www.cargeek.ir/


References 111

p. 108 wings do not affect load transfer directly;
p. 109 brake balance is affected by wings.
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Chapter 5
The Kinematics of Cornering

Cars have to negotiate corners. Everybody knows that. But not all cars do that the
same way [4]. This is particularly evident in race cars, where the ability to negotiate
a corner is a crucial aspect to minimize lap time.

In this chapter we will exploit the kinematics of a vehicle while taking a corner.
At first sight, taking a corner looks quite a trivial task. But designing a vehicle
that does it properly is one of the main challenges faced by a vehicle engineer [2].
Therefore, there is the need to investigate what really happens during the cornering
process. It will be shown that some very significant kinematical quantities must
follow precise patterns for the car to get around corner in a way that makes the
driver happy. In some sense, the geometric features of the trajectory must adhere to
some pretty neat criteria.

Before digging into the somehow mysterious kinematics of cornering, we will
recall some kinematical concepts. Strangely enough, it appears that they have never
been employed before in vehicle dynamics, although all of them date back to Euler
or so.

5.1 Planar Kinematics of a Rigid Body

As discussed at the beginning of Chap. 3, in many cases a vehicle can be seen as
a rigid body in planar motion. Basically, we need a flat road and small roll angles.
The congruence (kinematic) equations for this case have been given in Sect 3.2. We
will extensively use the symbols defined therein.

Here we recall some fundamental concepts of planar kinematics of a rigid body
[1, 3, 5]. They will turn out to be very useful to understand how a car takes a corner.

5.1.1 Velocity Field and Velocity Center

In a rigid body, by definition, the distance between any two points is constant. Ac-
cordingly, taken two such points, say A and B , their velocities must have the same

M. Guiggiani, The Science of Vehicle Dynamics, DOI 10.1007/978-94-017-8533-4_5,
© Springer Science+Business Media Dordrecht 2014

113

www.cargeek.ir

www.cargeek.ir

http://dx.doi.org/10.1007/978-94-017-8533-4_5
http://www.cargeek.ir/
http://www.cargeek.ir/


114 5 The Kinematics of Cornering

Fig. 5.1 Relationship
between the velocities of two
points of the same rigid body
in planar motion

component along the direction AB , as shown in Fig. 5.1. More precisely, the two
velocities are related by the following equation

VB = VA + � × AB = VA + VBA (5.1)

where � is the angular speed. This is the fundamental equation of the kinemat-
ics of rigid bodies, planar or three-dimensional. It had been already given in (2.1)
and (3.3).

It is worth noting that � is the same for all points. It is a kinematic feature of the
rigid body as a whole.

Another way to state the fundamental equation (5.1) is saying that the relative
velocity VBA = VB − VA is orthogonal to the segment AB and proportional to the
length of AB , that is |VBA| = |�||AB| (Fig. 5.1).

It can be shown [1, 3, 5] that in case of planar motion, that is � = rk, and with
r �= 0, at any instant there is one point C of the (extended) rigid body that has zero
velocity. Therefore, applying (5.1) to A and C, and then to B and C we have

VA = rk × CA and VB = rk × CB (5.2)

as shown in Fig. 5.1.
Several different names are commonly in use to refer to point C:

• instantaneous center of velocity;
• velocity center;
• instantaneous center of zero velocity;
• instantaneous center of rotation.

As the body changes its position, the point of the rigid body with zero velocity
changes as well. If we follow the positions of this sequence of points we obtain a
curve σf in the fixed plane, called the fixed centrode or space centrode, and another
curve σm on the moving plane, called the moving centrode or the body centrode. It
can be shown that the moving centrode rolls without slipping on the fixed centrode,
the point of rolling contact being C.
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Fig. 5.2 Velocity field of a
rigid wheel rolling on a flat
road

A simple example should help clarify the matter. Just consider a rigid circle
rolling without slipping on a straight line, as shown in Fig. 5.2. It is exactly like
a rigid wheel rolling on a flat road. The two centrodes are the circle σm and the
straight line σf . Point C as a point of the circle has zero velocity. However, the geo-
metric point1 Ĉ that at each instant coincides with C moves on the road with a speed

V
Ĉ

= rd (5.3)

where d is the diameter of the inflection circle.
The velocity field is like a pure rotation around C (Fig. 5.1). But the acceleration

field is not! In fact, the wheel is travelling on the road, not turning around C.

5.1.2 Acceleration Field, Inflection Circle and Acceleration Center

The counterpart of (5.1) for the accelerations of points of a rigid body is

aB = aA + �̇ × AB + � × (� × AB) = aA + aBA (5.4)

In case of planar motion it simplifies into (Fig. 5.3)

aB = aA + ṙk × AB − r2AB (5.5)

The relative acceleration aBA = aB − aA between any two points is proportional to
the length |AB| and forms an angle ξ with the segment AB (Fig. 5.3)

tan ξ = ṙ

r2
(5.6)

1By geometric point we mean a point not belonging to the rigid body.
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Fig. 5.3 Relationship
between the acceleration of
two points of the same rigid
body in planar motion

It can be shown that in case of planar motion, that is � = rk, and with r �= 0, at
any instant there is one point K of the (extended) rigid body that has zero accelera-
tion. In general, K �= C, unless the point C is truly a fixed point, like a fixed hinge.
The absolute acceleration of any point A forms an angle ξ with the segment KA, as
shown in Fig. 5.3.

Several different names are commonly in use to refer to point K :

• instantaneous center of acceleration;
• acceleration center;
• instantaneous center of zero acceleration.

The velocity and acceleration fields are superimposed in Fig. 5.4.
Let us consider again the rigid wheel rolling on a flat road. For the moment let

us also assume that it rolls at constant speed. The center O of the wheel has zero
acceleration, and hence it is the acceleration center K , as shown in Fig. 5.5. The ac-
celeration field is centripetal towards O = K . It is worth noting that the acceleration
of C is not zero

aC = nr2d (5.7)

Comparing Figs. 5.2 and 5.5, we see that there are points, like F1 and F2, whose
velocity and acceleration have the same direction. They all belong to a circle, called
the inflection circle. Even if we apply an angular acceleration ṙ , as in Fig. 5.6, the
points on the inflection circle still have collinear velocity and acceleration. The
points of the rigid body on the inflection circle, as the name implies, have a tra-
jectory with an inflection point, that is a point with zero curvature.
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Fig. 5.4 Velocity center,
acceleration center and
inflection circle

Fig. 5.5 Acceleration field of
a rigid wheel rolling at
constant speed on a flat road

Point C has a marvellous property: its acceleration is not affected by ṙ . In other
words, Eq. (5.7) holds true even if ṙ �= 0. Therefore, it is possible to obtain the
diameter d of the inflection circle from the knowledge of aC and ṙ .

The inflection circle turns out to be very useful to evaluate the radius of curva-
ture of the trajectory of any point of the rigid body. The rule is very simple and it
is exemplified in Fig. 5.7. Let us take point A. The center of curvature EA of its
trajectory must fulfill the following relationship

|AC|2 = |AEA||AFA| or, more compactly a2 = ef (5.8)

where EA and FA are always on the same side with respect to A (this is why point
A is always first in the three terms in (5.8)).
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Fig. 5.6 Acceleration field of
a rigid wheel rolling at
non-constant speed on a flat
road

Fig. 5.7 How the inflection
circle relates to the centers of
curvature of the trajectories of
the points of a rigid body

www.cargeek.ir

www.cargeek.ir

http://www.cargeek.ir/
http://www.cargeek.ir/


5.2 The Kinematics of a Turning Vehicle 119

Fig. 5.8 Classical approach
to the kinematics of a turning
vehicle

Quite interestingly, we can obtain the following formula for the centripetal (nor-
mal) component of the acceleration of A

an
A = V 2

A

|AEA| = (ra)2

e
= r2f = r2|AFA| (5.9)

5.2 The Kinematics of a Turning Vehicle

Driving a vehicle to make a turn amounts, roughly speaking, at forcing it to follow
a path with variable radius of curvature. The traditional approach looks only at the
kinematics for a given instant of time, as shown in Fig. 5.8. This is a good starting
point, but not the whole story. For instance, from Fig. 5.8 we cannot know the radius
of curvature of the trajectory of G (which, of course, is not equal to CG, in general).
But let us make the reasoning more precise.

A vehicle has infinitely many points and hence infinitely many trajectories. How-
ever, as a rigid body, these trajectories are not independent to each other. It suffices
to look at the trajectory (path) of two points. It is perhaps advisable to select the
midpoint A1 of the front axle and the midpoint A2 of the rear axle (Fig. 5.8). It is
not mandatory at all, but maybe convenient.

Looking at the trajectories also implies monitoring the radii of curvature and how
they relate to each other.

To monitor whether a vehicle is performing well, or not so well, we can con-
sider also the fixed and moving centrodes, along with the inflection circle. Indeed,
we should have clear in mind that the position of the velocity center C changes
continuously in time, thus tracing the two centrodes. Therefore, the two centrodes
“contain” all the geometric features of the kinematics of the turning vehicle.

5.2.1 Fixed and Moving Centrodes of a Turning Vehicle

The typical shape of the fixed and moving centrodes of a vehicle making a turn are
shown in Figs. 5.9 and 5.10. We see that the moving centrode σm is pretty much
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Fig. 5.9 Vehicle entering a
curve: moving centrode
rolling on the fixed centrode

Fig. 5.10 Vehicle exiting a
curve: moving centrode
rolling on the fixed centrode

a straight line, while the fixed centrode σf is made of two distinct parts, as is the
kinematics of turning: entering the curve and exiting the curve. The velocity center
C is the point of rolling contact of the two centrodes.

By definition, the vehicle belongs precisely to the same rigid plane of the moving
centrode. They move together.

Actually, the centrodes shown in Figs. 5.9 and 5.10 are typical of a vehicle mak-
ing a curve the good way. The centrodes changes abruptly if the vehicle does not
make the curve properly. This may happen, e.g., if the speed is too high. An exam-
ple of “bad” centrodes, and hence of bad performance, is shown in Fig. 5.11. We
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5.2 The Kinematics of a Turning Vehicle 121

Fig. 5.11 Centrodes of a turning vehicle with handling misbehavior in the final part of the curve
(the car goes into a spin)
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Fig. 5.12 Centrodes of a
Formula car making Turn 5 of
the Barcelona circuit (the
inflection circle is also
shown)

see that the centrodes for the exiting phase (Fig. 5.11(c)) are totally different with
respect to Fig. 5.10. The vehicle goes into a spin.

Quite interestingly, as shown in Fig. 5.11(b), the two centrodes start having a bad
shape although the vehicle still has an apparent good behavior. Therefore, the two
centrodes could be used as a warning of handling misbehavior. They depart from
the proper shape a little before the vehicle shows unwanted behavior.

To confirm that this is real stuff, we show in Fig. 5.12 the centrodes of a Formula
car making Turn 5 of the Barcelona circuit. In this case everything was fine, as
confirmed by the “good” shape of both centrodes. Also shown are the trajectory of
G and the inflection circle.

But not all laps are the same. Figure 5.13 shows the centrodes for the same curve
in a case in which the Formula car does not perform well.

The fixed centrodes for the two cases are compared in Fig. 5.14. The entering part
is pretty much the same, whereas the central and the exiting parts are very different.
It is worth noting that the trajectories of G are almost the same.

The moving centrodes are compared in Fig. 5.15. Again, they differ markedly in
the exiting part.

By definition, the centrodes are generated by the successive positions of the ve-
locity center C.

The moving centrode is given by the successive positions of C in the body-fixed
reference system, that is with respect to the vehicle. As already obtained in (3.11),
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5.2 The Kinematics of a Turning Vehicle 123

Fig. 5.13 Centrodes of a Formula car badly making Turn 5 of the Barcelona circuit (the inflection
circle is also shown)

the position of C with respect to the vehicle is given by (Fig. 5.8)

GC = Si + Rj = D (5.10)

where S = −v/r and R = u/r . The coordinates (xf , yf ) of the fixed centrode in the
ground-fixed reference system can be obtained from the knowledge of the absolute
coordinates of G, given in (3.9), and of the yaw angle (3.8)

xf (t) = xG
0 (t) + S(t) cosψ(t) − R(t) sinψ(t)

yf (t) = yG
0 (t) + S(t) sinψ(t) + R(t) cosψ(t)

(5.11)

5.2.2 Inflection Circle

The inflection circle, that is all those points whose trajectory have an inflection point,
can be easily obtained at any instant of time from the telemetry data. Here we list,
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124 5 The Kinematics of Cornering

Fig. 5.14 Comparison of the
fixed centrodes and of the
trajectories of a Formula car
making Turn 5 of the
Barcelona circuit

Fig. 5.15 Comparison of the
moving centrodes of a
Formula car making Turn 5 of
the Barcelona circuit

with reference to Fig. 5.16, some relevant formulæ

d = 1

r2

√(
v̇r − vṙ

r

)2

+
(

u̇r − uṙ

r

)2

=
√

Ṙ2 + Ṡ2

r2
(5.12)

d sinχ =
(

v̇r − vṙ

r

)
1

r2
= − Ṡ

r
(5.13)

d cosχ =
(

u̇r − uṙ

r

)
1

r2
= Ṙ

r
(5.14)
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Fig. 5.16 Inflection circle and definition of some relevant quantities

d = d cosχ i + d sinχj = Ṙi − Ṡj
r

(5.15)

aC = r2d(cosχ i + sinχj) = r2d = r(Ṙi − Ṡj) (5.16)

V
Ĉ

= rd(− sinχ i + cosχj) = Ṡi + Ṙj (5.17)

Ḋ = Ṡi + Ṙj − Sχ̇ j + Rχ̇ i = (Ṡ + Rχ̇)i + (Ṙ − Sχ̇)j (5.18)

ḋ = 1

r3d

[
r(ṘR̈ + ṠS̈) − ṙ

(
Ṙ2 + Ṡ2)] (5.19)

d

dt

(
D
d

)
= Ḋd − Dḋ

d2
= 1

d2

{[
(Ṡ + Rχ̇)d − Sḋ

]
i + [(Ṙ − Sχ̇)d − Rḋ

]
j
}

(5.20)

r(d · D) = ṘS − RṠ (5.21)

They cover many aspects, like:

• the diameter d of the inflection circle;
• its orientation χ with respect to the vehicle;
• the speed V

Ĉ
of the geometric point Ĉ;

• the acceleration aC of the velocity center C;
• the rate of change of d ;
• the rate of change of GC = D.

It is worth noting that almost all quantities depend on r , Ṙ and Ṡ.
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Fig. 5.17 Radii of curvature of a vehicle entering a turn properly

Along the axis of the vehicle there are, at any instant of time, some special points
(Fig. 5.16). Point Z has zero slip angle, that is, βZ = 0, or equivalently VZ = ui.
Point N has β̇N = 0.

5.2.3 Variable Curvatures

To truly understand the kinematics of a turning vehicle, we must also consider the
curvature of the trajectories and how they change in time under the driver action
on the steering wheel. In particular, we monitor the trajectories of the midpoints A1

and A2 of both axles, and their centers of curvature E1 and E2, respectively. There
is a nice interplay between radii of curvature, the velocity center and the inflection
circle.

The entering phase of making a turn is characterized by increasing steer angles
and diminishing radii of curvature. Moreover, the velocity center C gets closer and
closer to the vehicle. The corresponding kinematics is shown in Fig. 5.17. It is worth
noting that, according to (5.8), the radius of curvature of point A1 is equal to E1A1,
and hence it is shorter than CA1. On the contrary, the radius of curvature of point
A2 is equal to E2A2, which is longer than CA2. This happens because the vehicle
slip angle β1 at point A1 is increasing, while the vehicle slip angle β2 at point A2 is
diminishing (in the sense that it gets bigger, but it is negative), as shown in Fig. 5.17.

The formulæ that substantiate this reasoning are as follows

ρG = r + β̇

u/ cosβ
=
[

r

u
+ v̇u − vu̇

u3

]
cosβ (5.22)

ρ1 = r + β̇1

u/ cosβ1
=
[

r

u
+ (v̇ + a1ṙ)u − (v + a1r)u̇

u3

]
cosβ1 (5.23)
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Fig. 5.18 Radii of curvature of a vehicle exiting a turn properly

Fig. 5.19 Examples of undesirable kinematics in a turn

ρ2 = r + β̇2

u/ cosβ2
=
[

r

u
+ (v̇ − a2ṙ)u − (v − a2r)u̇

u3

]
cosβ2 (5.24)
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Fig. 5.20 Vehicle entering a curve: inflection circle (top) and centers of curvatures with the cor-
responding evolutes (bottom)
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Fig. 5.21 Vehicle exiting a
curve: inflection circle (top)
and centers of curvatures with
the corresponding evolutes
(bottom)
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cosβ = u√
u2 + v2

(5.25)

cosβ1 = u√
(v + a1r)2 + u2

(5.26)

cosβ2 = u√
(v − a2r)2 + u2

(5.27)

β̇1

u
� ρ1 − r

u
(5.28)

β̇2

u
� ρ2 − r

u
(5.29)

where ρi are the curvatures, that is the inverse of the radii of curvature.
The kinematics of a vehicle exiting properly a turn is shown in Fig. 5.18. We see

that many things go the other way around with respect to entering.
In both cases, the knowledge of the inflection circle immediately makes clear

the relationship between the position of the velocity center C and the centers of
curvature E1 and E2.

But things may go wrong. Bad kinematic behaviors are shown in Fig. 5.19. We
see that the time derivatives of β1 and β2 are not as they should be. Indeed, point C is
travelling also longitudinally. Again, the positions and orientations of the inflection
circle immediately conveys the information about the unwanted kinematics.

But, let us go back to good turning. The evolute of a curve is the locus of all
its centers of curvature. The evolutes of the trajectories of points A1 and A2, that
is the midpoints of each axle, are shown in the lower part of Figs. 5.20 and 5.21.
Also shown are the centers of curvature E1 and E2 at a given instant of time, along
with the corresponding inflection circle (this one drawn in the upper part with the
centrodes). We see that the two evolutes are almost coincident. The relative positions
of E1 and E2 are consistent with Figs. 5.17 and 5.18.
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Chapter 6
Handling of Road Cars

Ordinary road cars are by far the most common type of motor vehicle. Almost all of
them share the following features relevant to handling:

(1) four wheels (two axles);
(2) two-wheel drive;
(3) open differential;
(4) no wings (and hence, no significant aerodynamic downforces);
(5) no intervention by electronic active safety systems like ABS or ESP under or-

dinary operating conditions.

The handling analysis of this kind of vehicles is somehow the simplest that can be
envisaged.1 Moreover, it is typically assumed that the vehicle moves on a flat road
at almost constant forward speed u, thus requiring small longitudinal forces by the
tires.

The analysis developed here is based on the general vehicle model introduced in
Chap. 3. Owing to the above listed features, it will be possible to study the handling
of road cars by means of the celebrated single track model. However, all steps that
lead to the single track model will be thoroughly discussed.

6.1 Open Differential

We start by investigating when, in the global equilibrium equations (3.64), the lon-
gitudinal forces do not contribute to the yaw moment N , that is

ΔXi = 0 (6.1)

1Some sports cars and all race cars have a limited slip differential. Several race cars also have wings
which provide fairly high aerodynamic downforces at high speed. The handling of these vehicles
is somehow more involved than that of ordinary road cars and will be addressed in Chap. 7.
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132 6 Handling of Road Cars

The main requirement is that the vehicle be equipped with an open differential. Since
there is almost no friction inside an open differential mechanism, we have ηh � 1
in (3.132), and hence Ml � Mr . In other words, the driving wheels receive the same
torque by the engine.

Moreover, if the forward speed u is almost constant (u̇ � 0) and the aerodynamic
drag is not very high (like in ordinary cars, but not in a Formula 1 car, which, how-
ever, does not have an open differential),2 the longitudinal forces are quite small.
That means that also the longitudinal slips are small and can be neglected. There-
fore,

Fxij
� 0

σxij
� 0

(6.2)

which, according to (3.45), means that the rolling velocities ωij of each wheel are
given by

ω11r1 = (u − rt1/2) cos(δ11) + (v + ra1) sin(δ11) � u − rt1/2

ω12r1 = (u + rt1/2) cos(δ12) + (v + ra1) sin(δ12) � u + rt1/2

ω21r2 = (u − rt2/2) cos(δ21) − (v − ra2) sin(δ21) � u − rt2/2

ω22r2 = (u + rt2/2) cos(δ22) − (v − ra2) sin(δ22) � u + rt2/2

(6.3)

that is, all wheels are almost under longitudinal pure rolling conditions.

6.2 Fundamental Equations of Vehicle Handling

The vehicle has basically only lateral and yaw dynamics (often simply called lateral
dynamics), described by the following differential equations (cf. (3.64))

may = Y = Y1 + Y2

Jzṙ = N = Y1a1 − Y2a2
(6.4)

while

max = mvr = X = X1 + X2 − 1

2
ρSCxu

2 (6.5)

is now an algebraic equation, the unknown being (X1 + X2).

2The left and right wheels of the same axle are normally equipped with the same kind of brake.
Therefore, the braking torque is pretty much the same under ordinary operating conditions, and,
again, (6.1) holds true. However, there are important exceptions. The left and right braking forces
can be different if: (a) the grip is different and one wheel is locked; (b) the friction coefficients
inside the two brakes is different (for instance, because of different temperatures, which is often
the case in racing cars); (c) some electronic stability system, like ESP or ABS, has been activated.
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6.2 Fundamental Equations of Vehicle Handling 133

With an open differential, it is easy to solve (6.4) with respect to the front and
rear lateral forces

Y1 = ma2

l
ay + Jz

l
ṙ � ma2

l
ay

Y2 = ma1

l
ay − Jz

l
ṙ � ma1

l
ay

(6.6)

where we took into account that |Jzṙ| � |mayai |, since in a car Jz < ma1a2 and
|ṙai | � |ay |. In a two-axle vehicle with open differential the lateral forces are linear
functions of the lateral acceleration ay . This is a very peculiar and important result,
which greatly impacts on the whole vehicle model, as will be shown.

According to (3.114) and (3.115), the lateral load transfers are linear functions
of Y1 and Y2. Employing (6.6) we obtain the following simplified equations for load
transfers in vehicles with open differential

ΔZ1 � may

kφ1kφ2

t1kφ

[
h − q

kφ2

+ a2q1

lks
φ1

+ a2q1

lks
φ2

+ a2q1 + a1q2

lk
p
φ2

]
= mayη1

ΔZ2 � may

kφ1kφ2

t2kφ

[
h − q

kφ1

+ a1q2

lks
φ1

+ a1q2

lks
φ2

+ a2q1 + a1q2

lk
p
φ1

]
= mayη2

(6.7)

The two constants η1 and η2 depend, in a peculiar way, on the roll stiffnesses, on
the heights of the no-roll centers3 and on the longitudinal position of the center of
gravity.

Similarly, the suspension roll angles (3.110) can be set as functions of the lateral
acceleration only4

φs
1 = may

1

ks
φ1

kφ1kφ2

kφ

[
h − q

kφ2

+ a2q1

lk
p
φ1

− a1q2

lk
p
φ2

]
= mayρ

s
1

φs
2 = may

1

ks
φ2

kφ1kφ2

kφ

[
h − q

kφ1

+ a1q2

lk
p
φ1

− a2q1

lk
p
φ1

]
= mayρ

s
2

(6.8)

The same applies to tire roll angles φ
p
i

φ
p

1 = may

1

k
p
φ1

kφ1kφ2

kφ

[
h − q

kφ2

+ a2q1

lks
φ1

+ a2q1

lks
φ2

+ a2q1 + a1q2

lk
p
φ2

]
= mayρ

p

1

φ
p

2 = may

1

k
p
φ2

kφ1kφ2

kφ

[
h − q

kφ1

+ a1q2

lks
φ1

+ a1q2

lks
φ2

+ a2q1 + a1q2

lk
p
φ1

]
= mayρ

p

2

(6.9)

If, for simplicity, the tires are supposed to be perfectly rigid, that is k
p
φi

→ ∞,

we have ρ
p

1 = ρ
p

2 = 0, ρs
1 = ρs

2 = (h− q)/kφ and the expressions of the lateral load

3We call no-roll center what is commonly called roll center. This aspect is discussed in Sect. 3.8.8.
4In this model the roll inertial effects are totally disregarded.
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transfers become simpler

ΔZ1 � may

1

t1

[
kφ1(h − q)

kφ

+ a2q1

l

]
= mayη1

ΔZ2 � may

1

t2

[
kφ2(h − q)

kφ

+ a1q2

l

]
= mayη2

(6.10)

as in (3.118).
The total vertical loads (3.79) on each tire can also be simplified by discarding

the longitudinal load transfer. Moreover, cars with an open differential are not so
sporty to have significant aerodynamic vertical loads. Therefore, combining (3.79)
and (6.7), we get

Z11 = Fz11 = mga2

2l
− mayη1 = Z0

1

2
− ΔZ1(ay)

Z12 = Fz12 = mga2

2l
+ mayη1 = Z0

1

2
+ ΔZ1(ay)

Z21 = Fz21 = mga1

2l
− mayη2 = Z0

2

2
− ΔZ2(ay)

Z22 = Fz22 = mga1

2l
+ mayη2 = Z0

2

2
+ ΔZ2(ay)

(6.11)

which shows that all vertical loads are (linear) function of the lateral acceleration.
According to (3.123) and taking into account (6.8), we get the following expres-

sion for the steering angles of the wheels

δij = δ0
ij + δvτij + Υijφ

s
i (ay)

= δ0
ij + δvτij + Υijρ

s
i ay

= δij (δv, ay) (6.12)

which are functions of δv and, again, of the lateral acceleration ay . More precisely,
the term δvτij is the steer angle due to the steering wheel rotation δv , the term δ0

ij is
the toe-in/out angle , and the term Υijφ

s
i (ay) is the roll steer angle.

Under the assumed operating conditions (6.3), the tire lateral slips (3.49) become

σy11 = (v + ra1) − uδ11

u − rt1/2
� v + ra1

u
− δ11

σy12 = (v + ra1) − uδ12

u + rt1/2
� v + ra1

u
− δ12 (6.13)

www.cargeek.ir

www.cargeek.ir

http://www.cargeek.ir/
http://www.cargeek.ir/


6.2 Fundamental Equations of Vehicle Handling 135

σy21 = (v − ra2) − uδ21

u − rt2/2
� v − ra2

u
− δ21

σy22 = (v − ra2) − uδ22

u + rt2/2
� v − ra2

u
− δ22

since u � |rti/2| as discussed in (3.4). The lateral slips can be conveniently rewrit-
ten taking (6.12) into account

σy11 = v + ra1

u
− δvτ11 − δ0

11 − Υ11ρ
s
1ay

σy12 = v + ra1

u
− δvτ12 − δ0

12 − Υ12ρ
s
1ay

σy21 = v − ra2

u
− δvτ21 − δ0

21 − Υ21ρ
s
2ay

σy22 = v − ra2

u
− δvτ22 − δ0

22 − Υ22ρ
s
2ay

(6.14)

or, more compactly5

σyij
= σyij

(v, r, u, δv) = σyij
(β,ρ, ay, δv) (6.15)

Let, γ 0
i1 = −γ 0

i2 = γ 0
i be the camber angles under static conditions, and let

Δγi1 = Δγi2 = Δγi be the camber variations. The camber angles of the two wheels
of the same axle are thus given by

γi1 = γ 0
i + Δγi, γi2 = −γ 0

i + Δγi (6.16)

where the camber variation Δγi , according to (3.83), (6.8) and (6.9), depends on the
lateral acceleration ay

Δγi � may

[(
qi − bi

bi

)
ρs

i − ρ
p
i

]
= mayχi (6.17)

since the track variation term Δti/(2bi) is usually negligible.
The lateral forces exerted by the tires on the vehicle depend on many quantities,

as shown in the second equation in (2.72). For sure, there is a strong dependence
on the vertical loads Zij and on the lateral slips σyij

, while, in this model, we can
neglect the longitudinal slips σxij

. The camber angles γij need to be considered,
since they are quite influential, even if small. According to (3.125), the spin slips ϕij

are directly related to γij . Therefore, the simplified model for each lateral force is

Fyij
= Fyij

(
Z0

i /2 − ΔZi(ay), γ
0
i + Δγi(ay), σyij

(v, r, u, δv)
)

cos
(
δij (δv)
)

(6.18)

5Here we are abusing the notation: different functions bear the same name. However, the meaning
should be sufficiently clear and unambiguous.
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136 6 Handling of Road Cars

The lateral force Yi for each axle is obtained by adding the lateral forces of the
left tire and of the right tire (cf. (3.58))

Yi = Fyi1 cos
(
δi1(δv)
)+ Fyi2 cos

(
δi2(δv)
)

(6.19)

or, more explicitly, taking also (6.15) into account

Y1 = Fy11

(
Z0

1/2 − ΔZ1(ay), γ
0
1 + Δγ1(ay), σy11(v, r, u, δv)

)
cos
(
δ11(δv)

)
+ Fy12

(
Z0

1/2 + ΔZ1(ay),−γ 0
1 + Δγ1(ay), σy12(v, r, u, δv)

)
cos
(
δ12(δv)

)
= Y1(v, r, u, δv) = Y1(β,ρ, ay, δv)

Y2 = Fy21

(
Z0

2/2 − ΔZ2(ay), γ
0
2 + Δγ2(ay), σy21(v, r, u, δv)

)
cos
(
δ21(δv)

)
+ Fy22

(
Z0

2/2 + ΔZ2(ay),−γ 0
2 + Δγ2(ay), σy22(v, r, u, δv)

)
cos
(
δ22(δv)

)
= Y2(v, r, u, δv) = Y2(β,ρ, ay, δv)

(6.20)

The effects of ay on the steering angles δij can be neglected in the cosine terms
because they are very small. On the other hand, these effects are very influential on
the congruence equations (6.14).

It must be clearly understood that the functions in (6.20) are known functions.

6.3 Double Track Model

By double track model we mean actually a four-wheel dynamical model of the ve-
hicle. The governing equations are promptly obtained. It suffices to insert (6.20)
into (6.4)

m(v̇ + ur) = Y1(v, r, u, δv) + Y2(v, r, u, δv)

Jzṙ = Y1(v, r, u, δv)a1 − Y2(v, r, u, δv)a2
(6.21)

The double track model is a dynamical system with two state variables (namely, but
not necessarily, v(t) and r(t), as discussed in Sect. 6.5).

A general comment on this vehicle model is in order here: most quantities de-
pend (linearly) on the lateral acceleration ay . However, it must be remarked that
this peculiarity needs an open differential, no aerodynamic forces, almost constant
forward speed.

Unfortunately, the double track model is not as popular as the single track model
(often and mistakenly also named “bicycle model”). The goal of the next sections
is to present a comprehensive analysis of the single track model [1–4, 7, 8], thus
showing also its limitations.

It is a useful model, particularly for educational purposes, but good vehicle en-
gineers should be well aware of the steps taken to simplify the model, and hence
realize that in some cases the single track model can be not only useless, but even
misleading, depending on which aspects they are interested in.
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In many courses on vehicle dynamics, unfortunately, the single track model is
proposed without explaining in detail why, despite its awful appearance, it can pro-
vide useful insights into vehicle handling.

6.4 Single Track Model

To go from the double track to the single track model we need the following ad-
ditional assumption: the left and right gear ratio of the steering system are almost
equal, that is

(τ11 = τ12) = τ1 and (τ21 = τ22) = τ2 (6.22)

which is consistent with small steering angles, that is cos(δij ) � 1. This (not-so-true)
hypothesis, if combined with (6.14), leads to

σy11 =
(

v + ra1

u
− δvτ1

)
− δ0

11 − Υ11ρ
s
1ay

σy12 =
(

v + ra1

u
− δvτ1

)
− δ0

12 − Υ12ρ
s
1ay

σy21 =
(

v − ra2

u
− δvτ2

)
− δ0

21 − Υ21ρ
s
2ay

σy22 =
(

v − ra2

u
− δvτ2

)
− δ0

22 − Υ22ρ
s
2ay

(6.23)

Here, it is convenient to define (cf. (3.43)) what can be called the apparent slip
angles α1 and α2 of the front and rear axle, respectively

α1 = δvτ1 − v + ra1

u
= α1(v, r;u, δv)

α2 = δvτ2 − v − ra2

u
= α2(v, r;u, δv)

(6.24)

Combining (6.23) and (6.24), we obtain that both front lateral slips σy1i
are known

functions of only two variables, namely α1 and ay . Similarly, both rear lateral slips
are known functions of α2 and ay

σy11 = −α1 − δ0
11 − Υ11ρ

s
1ay = σy11(α1, ay)

σy12 = −α1 − δ0
12 − Υ12ρ

s
1ay = σy12(α1, ay)

σy21 = −α2 − δ0
21 − Υ21ρ

s
2ay = σy21(α2, ay)

σy22 = −α2 − δ0
22 − Υ22ρ

s
2ay = σy22(α2, ay)

(6.25)

This is the peculiar feature of the single track model (cf. (6.15)).
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Indeed, owing to this result, the two constitutive equations (6.20) become

Y1 = Fy11

(
Fz11(ay), γ11(ay), σy11(α1, ay)

)+ Fy12

(
Fz12(ay), γ12(ay), σy12(α1, ay)

)
= Fy11(α1, ay) + Fy12(α1, ay)

= Fy1(α1, ay)

Y2 = Fy21

(
Fz21(ay), γ21(ay), σy21(α2, ay)

)+ Fy22

(
Fz22(ay), γ22(ay), σy22(α2, ay)

)
= Fy21(α2, ay) + Fy22(α2, ay)

= Fy2(α2, ay)

(6.26)

As already obtained in (6.6), we have that the lateral forces are basically linear
functions of ay

Y1 � ma2

l
ay and Y2 � ma1

l
ay (6.27)

Combining (6.26) and (6.27) we obtain

ma2

l
ay = Fy1(α1, ay) and

ma1

l
ay = Fy2(α2, ay) (6.28)

These equations can be solved with respect to the lateral acceleration

ay = g1(α1) and ay = g2(α2) (6.29)

The final, crucial, step is to insert this result back into (6.27), thus obtaining the
axle characteristics

Y1 = Fy1

(
α1, g1(α1)

)= Y1(α1)

Y2 = Fy2

(
α2, g2(α2)

)= Y2(α2)
(6.30)

that is, two functions, one per each axle, that give the axle lateral force as a function
of only the corresponding apparent slip angle (cf. (6.20)). In other words, each axle
behaves pretty much as an equivalent single wheel with tire. The axle characteristics
are so important that they need an in-depth discussion. This is done in Sect. 6.4.2.

6.4.1 Governing Equations of the Single Track Model

Summing up, the single track model is governed by the following set of six fairly
simple equations:

• two equilibrium equations

m(v̇ + ur) = Y = Y1 + Y2 = may

Jzṙ = N = Y1a1 − Y2a2
(6.31)
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Fig. 6.1 Single track model

• two congruence equations

α1 = δvτ1 − v + ra1

u

α2 = δvτ2 − v − ra2

u

(6.32)

• two constitutive equations (axle characteristics)

Y1 = Y1(α1)

Y2 = Y2(α2)
(6.33)

A pictorial version of the single track model is shown in Fig. 6.1, where δ1 = δvτ1

and δ2 = δvτ2. Indeed, the equations governing such dynamical system are precisely
(6.31), (6.32) and (6.33). Therefore, the system of Fig. 6.1 can be used as a shortcut
to obtain the simplified equations of a vehicle. However, the vehicle model still has
four wheels, lateral load transfers, camber and camber variations, roll steer. These
aspects deserve further attention and will be addressed shortly.

The main feature of this model is that the two wheels of the same axle undergo
the same apparent slip angle αi , and hence can be replaced by a sort of equivalent
wheel, like in Fig. 6.1. However, that does not imply that the real slip angles of the
two wheels of the same axle are the same. Neither are the camber angles, the roll
steer angles, the vertical loads. Therefore, the single track model is not really single
track!
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140 6 Handling of Road Cars

Among the governing equations, only the two equilibrium equations are differ-
ential equations, and both are first order. Therefore, the single track model is a dy-
namical system with two state variables (namely, but not necessarily, v(t) and r(t),
as discussed in Sect. 6.5). The other four algebraic equations must be inserted into
the equilibrium equations to ultimately obtain the two dynamical equations of the
single track model

m(v̇ + ur) = Y(v, r;u, δv)

Jzṙ = N(v, r;u, δv)
(6.34)

or, more explicitly

v̇ = 1

m

[
Y1

(
δvτ1 − v + ra1

u

)
+ Y2

(
δvτ2 − v − ra2

u

)]
− ur = fv(v, r;u, δv)

ṙ = 1

Jz

[
a1Y1

(
δvτ1 − v + ra1

u

)
− a2Y2

(
δvτ2 − v − ra2

u

)]
= fr(v, r;u, δv)

(6.35)

To achieve this result and also to get some insights into the vehicle dynamic behav-
ior, it is convenient to discuss how to obtain the axle characteristics and what is the
net effect of the set-up parameters.

6.4.2 Axle Characteristics

By axle characteristics we mean two algebraic functions (one per each axle) of the
form Yi = Yi(αi), which provide the total lateral force as a function of the apparent
slip angle only, with the effects, e.g., of the lateral load transfers already accounted
for. They were obtained in (6.30) and (6.33), but the topic is so relevant to deserve
an in-depth discussion.

According to (6.20), (6.25), (6.26) and (6.27), the general framework for a given
vehicle is that

(1) there is a one-to-one correspondence between the lateral acceleration ay and the
following quantities:

• lateral load transfers ΔZi , see (6.7);
• camber angles γij , see (6.16) and (6.17);
• roll steer angles, see (6.12);

(2) both left and right tire lateral forces are known functions of the lateral acceler-
ation ay and of the same apparent slip angle αi , see (6.26);

(3) each axle lateral force Fyi
(αi, ãy) is the sum of the left and right tire lateral

forces;
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6.4 Single Track Model 141

Fig. 6.2 Plots of Fyi1 (αi , ay) and Fyi2 (αi , ay) (top) and of their sum Fyi
(αi , ay) (bottom), for four

values of ay ≥ 0 (solid line: ay = 0) and two different set-ups: stiffer in the second case

(4) each axle lateral force Yi is determined solely by the lateral acceleration ay ,
see (6.27).

Therefore, for any given value of ay , we can obtain the corresponding load trans-
fers, camber angles and roll steer angles and, consequently, plot the lateral forces
Fyi1(αi, ay) and Fyi2(αi, ay) of both wheels of the same axle, and also their sum
Fyi

(αi, ay) (cf. (6.26)), all as functions of αi only, that is using ay as a parame-
ter.

Two basic examples are shown in Fig. 6.2. They are basic in the sense that it is
assumed that the parameter ay affects the load transfer ΔZi only. More precisely, it
is assumed that γij = δ0

ij = Υij = 0.
In all plots in this section, the apparent slip angles are in degrees and forces are

in kN. All curves with the same kind of dashing were obtained with the same lateral
acceleration.
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142 6 Handling of Road Cars

Fig. 6.3 Axle characteristics (thick solid line) for the two cases of Fig. 6.2

The two cases in Fig. 6.2 have different values of ηi , and hence different load
transfers for the same lateral acceleration (higher load transfers in the second case,
probably due to higher roll stiffness). A very relevant fact in vehicle dynamics,
as stated in Sects. 2.9.2 and 2.11, is that the lateral force exerted by a single tire
grows less than proportionally with respect to the vertical load. This is clearly
shown in Fig. 6.2(top), and confirmed in Fig. 6.2(bottom) where the higher the
lateral acceleration and hence the load transfer, the lower the resulting curve of
Fyi

(αi, ay).
Once the functions Fyi

have been obtained as in Fig. 6.2(bottom), there is only
one final step to obtain the axle characteristic. Indeed, only one point of each curve
Fyi

(αi, ay) is actually a working point for the vehicle. The reason, as already dis-
cussed, is that there is a one-to-one correspondence between ay and Fyi

. Mathemat-
ically, it amounts to solving Eq. (6.28), that is

Fyi
(αi, ay) = may(l − ai)

l
(6.36)

as done in Fig. 6.3. The axle characteristics Yi(αi) (thick solid line) picks up just
one point of each dashed curve. The higher ηi in (6.7) or (6.10), the lower the axle
characteristic.

The effects of negative camber and of positive camber angles, i.e. γ 0
ij �= 0, are

shown in Fig. 6.4, left and right, respectively. If the top of the wheel is farther out
than the bottom (that is, away from the axle), it is called positive camber; if the
bottom of the wheel is farther out than the top, it is called negative camber.

Similarly, the effects of toe-in and toe-out, i.e. δ0
ij �= 0, are shown in Fig. 6.5, left

and right, respectively.
Also interesting is the case of roll steer, i.e. Υij �= 0, shown in Fig. 6.6. While

all other effects considered so far are symmetric with respect to the vehicle axis,
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Fig. 6.4 As in Fig. 6.2(left), but with negative camber (left) or positive camber (right). Also shown
the resulting axle characteristics, as in Fig. 6.3

and hence the contributions of the two wheels cancel each other at low lateral ac-
celeration, the roll steer is anti-symmetric (usually Υi1 = Υi2), and hence it affects
the axle characteristic even at low lateral acceleration. The same applies to camber
variations Δγi , as shown in Fig. 6.7.

Of course, all these effects may very well coexist in a real car. In Fig. 6.8, the
curve in the middle is the axle characteristic of Fig. 6.3(left), the top curve was
obtained including all parameters of the left-hand cases of Figs. 6.4–6.6, that is
negative camber, toe-in and positive roll steer, whereas the lower curve was obtained
including the parameters of all right-hand cases in the same figures (positive camber,
toe-out, negative roll steer).

The curves differ in the initial slope (slip stiffness) and also in the maximum
value. Both aspects have a big influence on vehicle handling. The axle characteris-
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144 6 Handling of Road Cars

Fig. 6.5 As in Fig. 6.2(left), but with toe-in (left) or toe-out (right). Also shown the resulting axle
characteristics, as in Fig. 6.3

tics are what characterize most vehicle dynamics, indeed. We remark that the axle
characteristics, under an apparent simplicity, contain a lot of information about the
vehicle features and set-up.

6.5 Alternative State Variables

The use of v(t) and r(t) as state variables is not mandatory, and other options can
be envisaged. Here we suggest other possible couples of state variables, which may
result in a more intuitive description of the vehicle motion. None of them is com-
monly employed, but nonetheless it is our opinion that they may provide some better
insights into vehicle handling, if properly handled. It is worth remarking that these
choices of state variables are by no means limited to the single track model.

www.cargeek.ir

www.cargeek.ir

http://www.cargeek.ir/
http://www.cargeek.ir/


6.5 Alternative State Variables 145

Fig. 6.6 As in Fig. 6.2(left), but with positive roll steer (left) or negative roll steer (right). Also
shown the resulting axle characteristics, as in Fig. 6.3

6.5.1 β and ρ as State Variables

The first set, β(t) and ρ(t), has been already introduced in (3.16) and (3.17). They
are repeated here for ease of reading (Fig. 6.1)

β = v

u
= − S

R
(3.16′)

and

ρ = r

u
= 1

R
(3.17′)

The corresponding governing equations of the single track model becomes:
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Fig. 6.7 As in Fig. 6.2(left), but with negative Δγi (left) or positive Δγi (right). Also shown the
resulting axle characteristics, as in Fig. 6.3

• equilibrium equations

m
(
β̇u + βu̇ + u2ρ

)= Y

Jz(ρ̇u + ρu̇) = N
(6.37)

• congruence equations

α1 = δvτ1 − β − ρa1

α2 = δvτ2 − β + ρa2
(6.38)

• constitutive equations (from the axle characteristics)

Y = Y(α1, α2) = Y1(α1) + Y2(α2)

N = N(α1, α2) = Y1(α1)a1 − Y2(α2)a2
(6.39)
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Fig. 6.8 Comparison of axle
characteristics obtained with
very different set-ups

The two first order differential equations (6.34), governing the single track
model, become

m
(
β̇u + βu̇ + u2ρ

)= Y(β,ρ; δv)

Jz(ρ̇u + ρu̇) = N(β,ρ; δv)
(6.40)

where the terms on the r.h.s. do not depend on u (vehicle without wings).

6.5.2 β1 and β2 as State Variables

Another useful set of state variables may be the vehicle slip angles at each axle
midpoint (Fig. 6.1)

β1 = β + ρa1

β2 = β − ρa2
(6.41)

The inverse equations are

β = β1a2 + β2a1

l

ρ = β1 − β2

l

(6.42)

The corresponding governing equations of the single track model become:
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• equilibrium equations

β̇1u + β1u̇ + (β1 − β2)
u2

l
= Y

m
+ N

Jz

a1

= Y1

mJz

(
Jz + ma2

1

)+ Y2

mJz

(Jz − ma1a2)

β̇2u + β2u̇ + (β1 − β2)
u2

l
= Y

m
− N

Jz

a2

= Y2

mJz

(
Jz + ma2

2

)+ Y1

mJz

(Jz − ma1a2)

(6.43)

• congruence equations

α1 = δvτ1 − β1

α2 = δvτ2 − β2
(6.44)

• constitutive equations (from the axle characteristics)

Y1 = Y1(α1)

Y2 = Y2(α2)
(6.45)

The two first order differential equations (6.34) or (6.40), governing the dynam-
ical system, become

β̇1u + β1u̇ + (β1 − β2)
u2

l

= Y1(δvτ1 − β1)

mJz

(
Jz + ma2

1

)+ Y2(δvτ2 − β2)

mJz

(Jz − ma1a2)

β̇2u + β2u̇ + (β1 − β2)
u2

l

= Y2(δvτ1 − β2)

mJz

(
Jz + ma2

2

)+ Y1(δvτ1 − β1)

mJz

(Jz − ma1a2)

(6.46)

where, again, the terms on the r.h.s. do not depend on u.
These equations highlight an interesting feature. The last terms in both equations

are often very small, and could even be purposely set equal to zero. Indeed, in road
cars Jz � ma1a2. Therefore, the coupling between the two equations is fairly weak.
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6.5.3 S and R as State Variables

Another possible set of state variables may be (Fig. 6.1)

S = −v

r
= −β

ρ
= −β1a2 + β2a1

β1 − β2

R = u

r
= 1

ρ
= l

β1 − β2

(6.47)

already introduced in (3.12) and (3.13).
The corresponding governing equations of the single track model become:

• equilibrium equations

−uṠ

R
+ u2

R
= Y

m
+ N

Jz

S

uṘ − u̇R

R2
= −N

Jz

(6.48)

• congruence equations

α1 = δvτ1 + S

R
− a1

R

α2 = δvτ2 + S

R
+ a2

R

(6.49)

• constitutive equations (from the axle characteristics)

Y1 = Y1(α1)

Y2 = Y2(α2)
(6.50)

6.6 Inverse Congruence Equations

The state variables v and r appear in both congruence equations (6.32). However, it
is possible to invert these equations to obtain two other equivalent equations, with
r/u appearing only in the first equation and v/u only in the second equation

r

u
= δ1 − δ2

l
− α1 − α2

l

v

u
= δ1a2 + δ2a1

l
− α1a2 + α2a1

l

(6.51)

where the more compact notation δ1 = δvτ1 and δ2 = δvτ2 has been introduced.
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The same steps can be taken for (6.38) with respect to ρ = r/u and β = v/u

ρ = δ1 − δ2

l
− α1 − α2

l

β = δ1a2 + δ2a1

l
− α1a2 + α2a1

l

(6.52)

Equations (6.44) do not need any further manipulation, since they are already
uncoupled. However, it is interesting to note that

βd = β1 − β2 = (δ1 − δ2) − (α1 − α2) = ρ(a1 + a2)

βs = β1 + β2 = (δ1 + δ2) − (α1 + α2) = 2β + ρ(a1 − a2)
(6.53)

It is important to realize that all these inverse congruence equations are not lim-
ited to steady-state conditions, although they are mostly used for the evaluation of
some steady-state features.

6.7 Vehicle in Steady-State Conditions

An essential step in understanding the behavior of a dynamical system, and therefore
of a motor vehicle, is the determination of the steady-state (equilibrium) configura-
tions (vp, rp). In physical terms, a vehicle is in steady-state conditions when, with
fixed position δv of the steering wheel and at constant speed u, it goes round with
perfectly circular trajectories of all of its points.

After having set δ̇v = 0 and u̇ = 0, the mathematical conditions for the system
being in steady state is to have v̇ = 0 and ṙ = 0 in (6.35). Accordingly, the lateral
acceleration drops the v̇ term and becomes

ãy = ur = u2

R
= u2ρ (6.54)

This equation was already introduced in (3.25), since it is not limited to the single
track model.

Finding the equilibrium points (vp, rp) amounts to solving the system of two
algebraic equations

0 = 1

m

[
Y1

(
δvτ1 − v + ra1

u

)
+ Y2

(
δvτ2 − v − ra2

u

)]
− ur = fv(v, r;u, δv)

0 = 1

Jz

[
a1Y1

(
δvτ1 − v + ra1

u

)
− a2Y2

(
δvτ2 − v − ra2

u

)]
= fr(v, r;u, δv)

(6.55)
to get (vp, rp) such that

fv(vp, rp;u, δv) = 0 and fr(vp, rp;u, δv) = 0 (6.56)
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Fig. 6.9 Steady state behavior: (a) nose-out, (b) nose-in

Because of the nonlinearity of the axle characteristics, the number of possible solu-
tions, for given (u, δv), is not known a priori.

Equations (6.56) define implicitly the two functions

vp = vp(u, δv) and rp = rp(u, δv) (6.57)

that is, the totality of steady-state conditions as function of the forward speed u and
of the steering wheel angle δv . This is quite obvious: given and kept constant the
forward speed u and the steering wheel angle δv , after a while (a few seconds at
most) the vehicle reaches the corresponding steady-state condition, characterized
by a constant lateral speed vp and a constant yaw rate rp .

While the yaw rate rp has necessarily the same sign as δv , the same does not
apply to the lateral speed vp . As shown in Fig. 6.9, in a left turn the vehicle slip
angle βp = vp/u can either be positive or negative. As a rule of thumb, at low
forward speed the vehicle moves “nose-out”, whereas at high speed the vehicle goes
round “nose-in”.

6.7.1 The Role of the Steady-State Lateral Acceleration

It is common practice to employ (ãy, δv), instead of (u, δv), as parameters to char-
acterize a steady-state condition. This is possible because

ãy = urp(u, δv) which can be solved to get u = u(ãy, δv) (6.58)

At first it may look a bit odd to employ (ãy, δv) instead of (u, δv), but it is not,
since it happens that some steady-state quantities are functions of ãy only. This is
quite a remarkable fact, but it should not be taken as a general rule.6

6For instance, vehicles equipped with locked differential and/or with relevant aerodynamic down-
forces always need (at least) two parameters.
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The reason for such a fortunate coincidence in the case under examination is
promptly explained. Just look at the equilibrium equations at steady state with the
inclusion of the axle characteristics

mãy = Y1(α1) + Y2(α2)

0 = Y1(α1)a1 + Y2(α2)a2
(6.59)

They yield this noteworthy result

Y1(α1)l

ma1
= ãy and

Y2(α2)l

ma2
= ãy (6.60)

which can be more conveniently rewritten as

Y1(α1)l

mga1
= Y1(α1)

Z0
1

= ãy

g
and

Y2(α2)l

mga2
= Y2(α2)

Z0
2

= ãy

g
(6.61)

where Z0
1 and Z0

2 are the static vertical loads on each axle.
Therefore, if we take the monotone part of each axle characteristic, there is a

one-to-one correspondence between ãy and the apparent slip angles at steady state
(Fig. 6.10)

α1 = α1(ãy) and α2 = α2(ãy) (6.62)

This is the key fact for using ãy . Both slip angles only feel the lateral acceleration, no
matter if the vehicle has small u and large δv or, vice versa, large u and small δv . In
other words, the radius of the circular trajectory of the vehicle does not matter at all.
Only ãy matters to the lateral forces and hence to the apparent slip angles. Actually,
this very same property has been already used to build the axles characteristics:
Eq. (6.62) are just the inverse functions of (6.29). We remark that (6.62) must not
be taken as a general rule, but rather as a fortunate coincidence (it applies only to
vehicles with two axles, open differential, no wings and small steering angles).

Another very important result comes directly from (6.61)

Y1(α1)

Z0
1

= Y2(α2)

Z0
2

= ãy

g
(6.63)

that is, at steady state, the lateral forces are always proportional to the corresponding
static vertical loads. Therefore, the normalized axle characteristics

Ŷ1(α1) = Y1(α1)

Z0
1

and Ŷ2(α2) = Y2(α2)

Z0
2

(6.64)

are what really matters in vehicle dynamics. The normalized axle characteristics are
non-dimensional. Their maximum value is equal to the grip available in the lateral
direction and is, therefore, a very relevant piece of information.
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6.7.2 Steady-State Analysis

We have already stated that the two functions (6.57) define all steady state condi-
tions. However, the topic is so relevant to deserve additional attention and discus-
sion.

From (6.62) and (6.52) we have, at steady state, the following functions

ρ = ρp(ãy, δv) = rp

u
= τ1 − τ2

l
δv − α1(ãy) − α2(ãy)

l

β = βp(ãy, δv) = vp

u
= τ1a2 + τ2a1

l
δv − α1(ãy)a2 + α2(ãy)a1

l

(6.65)

A vehicle has unique functions ρp(ãy, δv) and βp(ãy, δv). As will be shown, they
tell us a lot about the global vehicle steady-state behavior. In other words, these two
maps fully characterize any steady-state conditions of the vehicle.

The two functions ρp(ãy, δv) and βp(ãy, δv) can also be obtained experimentally,
once a prototype vehicle is available, by performing some rather simple tests on a
flat proving ground. With the vehicle driven at almost constant speed u and a slowly
increasing steering wheel angle δv , it suffices to measure the following quantities:
rp , vp , u, ãy and δv . It is worth noting that none of these quantities does require to
know whether the vehicle has two axles or more, or how long the wheelbase is. In
other words, they are all well defined in any vehicle.

Of course, the r.h.s. part of (6.65) is strictly linked to the single track model, and
it is useful to the vehicle engineer to understand how to modify the vehicle behavior.

A key feature, confirmed by tests on real road cars, is that the δv-dependence
and the ãy -dependence are clearly separated.7 Both maps in (6.65) are (in this
model) linear with respect to the steering wheel angle δv , whereas they are certainly
strongly nonlinear with respect to the steady-state lateral acceleration ãy . The linear
parts are totally under control, in the sense that both of them are simple functions
of the steer gear ratios and of a1 and a2. The nonlinear parts are more challenging,
coming directly from the interplay of the axle characteristics.

6.7.2.1 Steady-State Gradients

It is informative, and hence quite useful, to define and compute/measure the gradi-
ents of the two functions in (6.65)

gradρp =
(

∂ρp

∂ãy

,
∂ρp

∂δv

)
= (βy,βδ) = −(Kρy ,Kρδ )

gradβp =
(

∂βp

∂ãy

,
∂βp

∂δv

)
= (ρy, ρδ) = −(Kβy ,Kβδ )

(6.66)

7We remark that this is no longer true in vehicles with locked differential and/or aerodynamic
vertical loads.
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As will be discussed shortly, only one out of four gradient components is usually
employed in classical vehicle dynamics,8 thus missing a lot of information. But this
is not the only case in which classical vehicle dynamics turns out to be far from
systematic and rigorous. This lack of generality of classical vehicle dynamics is the
motivation for some of the next sections.

6.7.2.2 Understeer and Oversteer

For further developments, it is convenient to rewrite (6.65) in a more compact form

ρ = ρp(ãy, δv) = ãy

u2
=
(

τ1 − τ2

l

)
δv − fρ(ãy)

β = βp(ãy, δv) =
(

τ1a2 + τ2a1

l

)
δv − fβ(ãy)

(6.67)

where

fρ(ãy) = α1(ãy) − α2(ãy)

l

fβ(ãy) = α1(ãy)a2 + α2(ãy)a1

l

(6.68)

are the nonlinear functions peculiar to each vehicle. They are called here slip func-
tions. Let us discuss this topic by means of a few examples.

First, let us consider the normalized axle characteristics (multiplied by g) shown
in Fig. 6.10(left). In this example, it has been assumed that both axles have the same
lateral grip equal to 1. When inverted, they provide the apparent slip angles α1(ãy)

and α2(ãy) shown in Fig. 6.10(right). We see that, in this case, α1(ãy) > α2(ãy),
which yields two slip functions fρ and fβ as in Fig. 6.11. A vehicle with a monotone
increasing function fρ(ãy) is said to be an understeer vehicle.

As a second example, let us consider the normalized axle characteristics (mul-
tiplied by g) shown in Fig. 6.12(left). They are like in Fig. 6.10, but inter-
changed. When inverted, they provide the two functions α1(ãy) and α2(ãy) shown
in Fig. 6.12(right). In this case α1(ãy) < α2(ãy), and hence the two slip functions fρ

and fβ are as in Fig. 6.13. A vehicle with a monotone decreasing function fρ(ãy) is
said to be oversteer.

6.8 Handling Diagram—The Classical Approach

In classical vehicle dynamics only the function fρ(ãy) is considered, while fβ(ãy)

is usually neglected. Moreover, it is customary to rewrite the first equation in (6.67)

8It is the well known understeer gradient K , defined in (6.71). Unfortunately, it is not a good pa-
rameter and should be replaced by the gradient components (6.66), as demonstrated in Sect. 6.15.1.
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Fig. 6.10 Normalized axle characteristics of an understeer vehicle (left) and corresponding appar-
ent slip angles (right)

Fig. 6.11 Slip functions of
an understeer vehicle

as a system of two equations
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

y =
(

τ1 − τ2

l

)
δv − ãy

u2
=
(

τ1 − τ2

l

)
δv − 1

R

y = fρ(ãy) = α1(ãy) − α2(ãy)

l

(6.69)
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Fig. 6.12 Normalized axle characteristics of an oversteer vehicle (left) and corresponding apparent
slip angles (right)

Fig. 6.13 Slip functions of
an oversteer vehicle

since, at steady state, ρp = ãy/u
2. Solving this system amounts to obtaining the

values of (ãy, fρ) attained under the imposed operating conditions (u, δv). Geomet-
rically, that can be seen as the intersection between a straight line and the so-called
handling curve y = fρ(ãy) [6–8], as shown in Fig. 6.14. Another way to recast the
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Fig. 6.14 Handling diagram
of an understeer vehicle

Fig. 6.15 Handling diagram
of an oversteer vehicle

system (6.69) is

δ − l

R
= α1(ãy) − α2(ãy) (6.70)

where δ = (τ1 − τ2)δv . This is by far the most classical way to write this equation.
Together, the handling curve and the straight lines, form the celebrated handling

diagram.
The handling curve y = fρ(ãy) is peculiar to each vehicle, since it depends on the

normalized axle characteristics. The straight line depends on the selected operating
conditions. In Fig. 6.14 two intersecting lines share the same value of δv , while the
two parallel lines share the same value of u.

Perhaps, the best way to understand the handling diagram is by assuming that
the steering wheel angle δv is kept constant, while the forward speed u is (slowly)
increased. In Fig. 6.15, an increasing u results also in an increasing ãy . Therefore,
from (6.70) with constant δv , the faster the vehicle, the larger the radius R. This is
called understeer behavior. On the contrary, if the handling curve is, e.g., like in
Fig. 6.15, the faster the vehicle with constant δv , the smaller the radius R. This is
called oversteer behavior. Actually, when the straight line becomes tangent to the
handling curve, as shown in Fig. 6.15, the vehicle becomes unstable. It means that
the vehicle has reached the critical speed associated to that value of δv . The concept
of critical speed will be discussed in another section in a more general framework.

Classical vehicle dynamics stops about here. In the next section a fresh, more
comprehensive, global approach is developed. It brings new insights into the global
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Fig. 6.16 Case not covered
by the classical theory

steady-state behavior of vehicles, along with some new hints into the transient be-
havior.

6.9 Weak Concepts in Classical Vehicle Dynamics

Some “fundamental” concepts in vehicle dynamics are indeed very weak if ad-
dressed with open mind. They are either not well defined, particularly when we
look at real vehicles, or they are commonly defined in an unsatisfactory way. This
is a serious practical drawback that can lead to wrong results and conclusions.

According to SAE J266 Standard, Steady-State Directional Control Test Proce-
dures For Passenger Cars and Light Trucks

understeer/oversteer gradient K is defined as the difference between steer angle gradient
and Ackermann steer angle gradient.

In formula, from (6.70)

K = d

dãy

(
δ − l

R

)
(6.71)

Therefore, we need both the steer angle δ and the Ackermann steer angle l/R. Un-
fortunately, neither of them is clearly defined in a real vehicle. In fact, they are well
defined only in the single track model, as it is done, e.g., in Fig. A1 in the SAE
J266 Standard. In a real vehicle the two front wheels have typically different steer
angles (Fig. 6.16). Therefore, the steer angle δ is not precisely defined. The Ack-
ermann steer angle l/R also suffers whenever a vehicle has three or more axles, as
the wheelbase l is no longer a clear concept (Fig. 6.16). Someone may object that
almost all cars have two axles. But, nonetheless, we cannot ground a theory on such
a weak concept.

The understeer gradient K has been an important performance metric in ana-
lyzing the handling behavior of vehicles. Unfortunately, it should not have been. It
will be demonstrated here that it is not a good parameter to measure the handling
behavior of a vehicle. Nor even of a single track model.
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Fig. 6.17 What did the driver intend to do?

6.9.1 Popular Definitions of Understeer/Oversteer

Perhaps, the most astonishing case of the use of unclear concepts is the popular way
to “define” understeer and oversteer:

Oversteer is what occurs when a car steers by more than the amount commanded by the
driver. Conversely, understeer is what occurs when a car steers less than the amount com-
manded by the driver.
Understeer: a tendency of an automobile to turn less sharply than the driver intends (or
would expect).
The term understeer means that you have to give your car more steering input than the
corner should require to get it to go around.

What is the “amount commanded by the driver”? What is the scientific, quantitative,
meaning of what “the driver intends”? What does it mean “than the corner should
require”?

Figure 6.17 exemplifies this paradoxical situation. Three different curves,
three identical trajectories, only one is fine in each case. What about the under-
steer/oversteer behavior of the car? What did the driver intend?

6.10 Map of Achievable Performance (MAP)—A New Global
Approach

The handling diagram, although noteworthy, does not provide a global picture of
the handling behavior. Just consider that the use of ãy as input variable, that is one
variable instead of two, hides some features of the vehicle handling behavior.

Here we suggest a completely new approach, a global one. That is, an approach
that unveils, at a glance, the overall steady-state features of the vehicle under in-
vestigation, thus making it easier to distinguish between a “good” vehicle and a
“not-so-good” one.

As stated in Sect. 6.7, the steady-state handling behavior is completely described
by the two functions (6.57)

vp = vp(u, δv) and rp = rp(u, δv) (6.57′)
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For further developments, it is convenient to solve the equation

ãy = urp(u, δv) (6.72)

with respect to ãy , thus getting the function ãy(u, δv), which can then be inserted
back into (6.65) to obtain these new handling maps

ρ = ρ(u, δv) =
(

τ1 − τ2

l

)
δv − α1(u, δv) − α2(u, δv)

l

β = β(u, δv) =
(

τ1a2 + τ2a1

l

)
δv − α1(u, δv)a2 + α2(u, δv)a1

l

(6.73)

These maps can be obtained experimentally or through simulations. Therefore, they
are not limited to the single track model.

Actually, we can solve (6.72) also with respect to δv to obtain δv(ãy, u). Inserting
this function into either (6.65) or (6.73), we get ρ(ãy, u) and β(ãy, u). This is a
somehow unusual way to map the steady-state behavior, but which turns out to be
quite useful.

To set the topic in an even more convenient framework, we define

(1 + χ̂ )δ = δ1 = τ1δv

χ̂δ = δ2 = τ2δv

(6.74)

Usually, χ̂ = 0 and hence δ is just the steering angle of the front wheels. However,
χ̂ �= 0 leaves room for rear steering as well. In general,

δ = δ1 − δ2 = (τ1 − τ2)δv (6.75)

and it is called net steer angle of the wheels. With this notation, the handling maps
(6.73) become

ρ = ρ(u, δ) = δ

l
− α1(u, δ) − α2(u, δ)

l

β = β(u, δ) =
(

(1 + χ̂)a2 + χ̂a1

l

)
δ − α1(u, δ)a2 + α2(u, δ)a1

l

(6.76)

Instead of doing as in (6.70), here we take a fresh approach and consider the
handling maps of both ρ and β , and both as functions of two variables. This is a
more general point of view that leads to a new global approach that we present here
for the very first time and that we call Map of Achievable Performance (MAP).

Actually, under the acronym MAP we will present two types of possible handling
maps, each one on the corresponding achievable region.
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Fig. 6.18 Constant speed lines on the ρ–δ MAP for an understeer vehicle

6.10.1 MAP Curvature ρ vs Steer Angle δ

A central issue in vehicle dynamics is how a vehicle responds to the driver input
commands (namely, the steering wheel angle δv and the forward speed u). Well, let
us map it. The plane (δ, ρ) suits the purpose, as we are going to show here for the
first time.

As a first example, let us consider a vehicle with the front and rear normalized
axle characteristics (multiplied by g) shown in Fig. 6.10.9 We recall that it is an
understeer vehicle and that the corresponding slip functions and handling diagram
are shown in Figs. 6.11 and 6.14, respectively.

If in the plane (δ, ρ) we draw the lines at constant speed u we get the plot shown
in Fig. 6.18, if ρ ≥ 0. In the same achievable region, we can draw the lines at con-
stant lateral acceleration ãy , as shown in Fig. 6.19. According to (6.65), they are
parallel straight lines. In Fig. 6.20 both lines at constant u and constant ãy are drawn
on the whole achievable region.

The achievable region is bounded by:

(1) maximum speed (dashed line in Fig. 6.19);
(2) maximum lateral acceleration (dashed line in Fig. 6.18);
(3) zero lateral acceleration;
(4) maximum steer angle.

9Moreover, to keep, for the moment, the analysis as simple as possible, we also assume that

Ŷ1(x) = Ŷ2(kx), with k > 0.
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Fig. 6.19 Constant lateral acceleration lines on the ρ–δ MAP for an understeer vehicle

Fig. 6.20 ρ–δ MAP for an understeer vehicle
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Fig. 6.21 ρ–δ MAP for a
vehicle with too much
understeer

Fig. 6.22 Constant lateral
acceleration lines on the ρ–δ

MAP for a too little
understeer vehicle

We see that the driver must act on both u and δ to control the vehicle, that is to
drive it on a curve with curvature ρ and lateral acceleration ãy . But, the key feature is
that it can be done fairly easily because the lines at constant speed are “well shaped”,
that is quite far apart from each other and neither too flat, nor too steep (Fig. 6.18).

In Fig. 6.20, all lines at constant speed intersect all lines at constant lateral accel-
eration. This is typical of all vehicle without significant aerodynamic vertical loads.
This is another piece of information that is provided by this kind of maps on the
achievable region.

An example of a not-so-nice achievable region is shown in Fig. 6.21. A vehicle
with a map like in Fig. 6.21 shows too much understeer: the lines at high speed are
too flat, showing that the driver can increase δ without getting a significant increase
of ρ. Not a desirable behavior.

Another example of undesirable behavior, but for opposite reasons, is shown
in Fig. 6.22. This is a vehicle with too little understeer. It has a very narrow achiev-
able region, which means that the driver has a very heavy task in controlling the
vehicle: the lines at zero and maximum lateral acceleration are very close together.
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Fig. 6.23 Apparent
achievable region on the ρ–δ

MAP for an oversteer vehicle

Fig. 6.24 Constant speed
lines and truly achievable
region on the ρ–δ MAP for
an oversteer vehicle

An oversteer vehicle (whose corresponding slip functions and handling diagram
are shown in Figs. 6.13 and 6.15, respectively) has an achievable region as in
Fig. 6.23. The lines at constant ãy , shown in Fig. 6.24, are quite far apart like in
Fig. 6.18, but the lines at constant speed u are very badly shaped. At high speed
they are too steep, meaning that a small variation of δ drastically changes ρ and ãy .

Moreover, the vehicle becomes unstable when the u-lines have vertical slope. Ac-
cordingly, the truly achievable region becomes smaller, as shown in Fig. 6.24, where
the truly achievable region is bounded by the stability boundary (long-dashed line).

All these examples show how the map curvature vs steer angle provides a very
clear and global picture of the vehicle handling behavior. It makes clear why a well
tuned vehicle must be moderately understeer. Too much or too little understeer are
not desirable because the vehicle becomes much more difficult to be driven (for
opposite reasons).
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Fig. 6.25 Achievable region
for an understeer vehicle in
the plane (ρ,β)

The difference between understeer and oversteer is laid bare (Figs. 6.20
and 6.23). Both have far apart ãy -lines, but covering achievable regions on opposite
sides. In fact, the u-lines are totally different.

The more one observes these handling maps on the corresponding achievable
regions, the more the global handling behavior becomes clear.

6.10.2 MAP: Vehicle Slip Angle β vs Curvature ρ

Other very useful handling maps can be drawn in the plane (ρ,β), that is maps
which show the relationship between the curvature ρ and the vehicle slip angle β .
Again, it is possible at a glance to appreciate the difference between different vehi-
cles.

The achievable region for an understeer vehicle is shown in Fig. 6.25. It is
bounded by four lines, each with a precise physical meaning:

(1) upper line: zero lateral acceleration and forward speed;
(2) lower line: maximum lateral acceleration;
(3) left line: maximum forward speed;
(4) right line: maximum steer angle.

But more interesting are the MAPs (Map of Achievable Performance) that can
be drawn inside the achievable region.

Curves at constant speed u and also lines at constant steer angle δ are shown in
Fig. 6.26 for an understeer vehicle (the same of Fig. 6.20). As expected, moving
top to bottom along the lines at constant steer angles, that is with increasing speed,
brings smaller values of the curvature ρ. Also interesting is to observe that at low
speed the slip angle β grows with δ, whereas at high speed it is the other way around.
At intermediate speeds, β initially grows and then decreases.
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Fig. 6.26 Understeer
vehicle: β–ρ MAP with
curves at constant speed u

and lines at constant steer
angle δ

Fig. 6.27 Understeer
vehicle: β–ρ MAP with
curves at constant lateral
acceleration ãy and lines at
constant steer angle δ

Lines at constant lateral acceleration ãy along, again, with lines at constant δ,
are shown in Fig. 6.27 for the same understeer vehicle. As expected, the vehicle
slip angle β grows steadily if the steer angle δ is increased with constant lateral
acceleration ãy .

Combining Figs. 6.26 and 6.27 we obtain Fig. 6.28: quite an informative picture
to grasp the global vehicle behavior. We can appreciate the interplay between a lot
of relevant handling quantities. Again, in Fig. 6.28, all lines at constant speed inter-
sect all lines at constant lateral acceleration. This is typical of all vehicles without
significant aerodynamic vertical loads.

The achievable region in the plane (ρ,β), that is the β–ρ MAP, for an oversteer
vehicle (the same of Figs. 6.24 and 6.23) is shown in Fig. 6.29, along with curves
at constant speed u and lines at constant steer angle δ. As expected, moving top to
bottom along the lines at constant steer angles, that is with increasing speed, brings
bigger values of the curvature ρ.

Very instructive is the comparison between Figs. 6.26 and 6.29, that is between
an understeer and an oversteer vehicle. The two achievable regions have different
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Fig. 6.28 Understeer
vehicle: β–ρ MAP with lines
at constant u, ãy and δ

Fig. 6.29 Oversteer vehicle:
β–ρ MAP with curves at
constant speed u and lines at
constant steer angle δ

Fig. 6.30 Vehicle with too
much understeer: β–ρ MAP
with lines at constant u, ãy

and δ
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Fig. 6.31 Effects of rear steering on the achievable region: rear wheels turning opposite of the
front wheels (left), rear wheels turning like the front wheels (right)

Fig. 6.32 Achievable region
of a vehicle with rear wheels
turning opposite of the front
wheels at low speed and like
the front wheels at high speed

shapes also because an oversteer vehicle becomes unstable for certain combina-
tions of speed and steer angle, as already pointed out when discussing Fig. 6.24.
These critical combinations form a sort of stability boundary which collects all
points where the u-curves and δ-lines are tangent to each other, as shown in both
Figs. 6.24 and 6.29.

On the opposite side, a vehicle with too much understeer has an achievable region
like in Fig. 6.30, which comes with Fig. 6.21.

The effects of rear steering (in addition to front steering, of course) are shown in
Fig. 6.31. The picture on the left is for the case of rear wheels turning opposite of
the front wheels, with χ̂ = −0.1 in (6.74), whereas the picture on the right is for rear
wheels turning like the front wheels, with χ̂ = 0.1. The vehicle slip angle β is pretty
much affected (cf. Fig. 6.28). Basically, a negative χ̂ moves the achievable region
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Fig. 6.33 Effect of steering on β: front steering only (top) and also rear steering (bottom). All
cases have the same α1 and α2

upwards, and vice versa. On the other hand, χ̂ does not impinge on the available
region in the plane (δ, ρ).

To have a narrower achievable region we have to move down the upper part and
move up the lower part in the plane (ρ,β). This is indeed the effect of a steer-
ing system with rear wheels turning opposite of the front wheels at low speed,
and turning like the front wheels at high speed. That is a steering system with,
e.g., χ̂ (u) = −χ̂0 cos(πu/umax). The net result can be appreciated by comparing
Fig. 6.32 with Fig. 6.28. The vehicle behaves better if β spans a smaller range.

From all these figures, it is also clear for which combinations of δ and ãy we
have positive or negative β . The achievable region provides a much better insight
into rear steering than by looking at, e.g., Fig. 6.33.

6.11 Vehicle in Transient Conditions (Stability and Control
Derivatives)

Steady-state analysis cannot be the whole story. Indeed, a vehicle is quite often in
transient conditions, that is with time varying quantities (forces, speeds, yaw rate,
etc.). Addressing the transient behavior is, of course, more difficult than “simply”
analyzing the steady state. More precisely, the steady-state conditions (also called
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trim conditions) are just the equilibrium points from which a transient behavior can
start.

The general way to study the transient behavior of any dynamical system is
through in-time simulations. However, this approach has some drawbacks. Even
after a large number of simulations it is quite hard to predict beforehand what the
outcome of the next simulation will be.

One way to simplify the analysis of a non-linear dynamical system is to consider
only small oscillations about steady-state (trim) conditions. This idea leads to the
approach based on stability derivatives and control derivatives (as they are called in
aerospace engineering).

The nonlinear equations of motion of the vehicle are (cf. (6.40))

m
(
uβ̇ + u̇β + u2ρ

)= Y(β,ρ;u, δv)

Jz(uρ̇ + u̇ρ) = N(β,ρ;u, δv)
(6.77)

We prefer to use (β,ρ), instead of (v, r), as state variables because they provide a
more “geometric” description of the vehicle motion. Since β = v/u and ρ = r/u, it
is pretty much like having normalized with respect to the forward speed u.

6.11.1 Steady-State Conditions (Equilibrium Points)

At steady-state we have, by definition, v̇ = ṙ = 0, that is β̇ = ρ̇ = 0. The driver has
direct control on u and δv , which are kept constant and whose trim values are named
ua and δva . The equations of motion (6.77) become

mu2
aρ = Y(β,ρ;ua, δva)

0 = N(β,ρ;ua, δva)
(6.78)

which can be solved to get the steady-state maps

βp = β̂p(ua, δva) = vp(ua, δva)

ua

ρp = ρ̂p(ua, δva) = rp(ua, δva)

ua

(6.79)

It is customary, and perhaps more convenient, to use ãy = uarp(ua, δva), which
provides ua = ua(ãy, δva) and hence

βp = βp(ãy, δva) = β̂p

(
ua(ãy, δva), δva

)
ρp = ρp(ãy, δva) = ρ̂p

(
ua(ãy, δva), δva

) (6.80)

These maps have been thoroughly discussed in Sect. 6.10, where the new concept of
MAP (Map of Achievable Performance) has been also introduced. In a real vehicle,
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these maps can also be obtained by means of classical steady-state tests. Therefore,
they do not require departing from the traditional way of vehicle testing.

6.11.2 Linearization of the Equations of Motion

The basic idea is to linearize around an equilibrium point to get information about
the dynamic behavior in its neighborhood. It is a standard approach for almost any
kind of dynamical systems.

6.11.2.1 Free Oscillation (no Driver Action)

Assuming that the driver takes no action (i.e., both u = ua and δv = δva are constant
in time), the first order Taylor series expansion of the equations of motion (6.77)
around the equilibrium point (βp,ρp) are as follows

m
(
uaβ̇ + u2

aρ
)= Y0 + Yβ(β − βp) + Yρ(ρ − ρp)

Jzuaρ̇ = N0 + Nβ(β − βp) + Nρ(ρ − ρp)
(6.81)

where

Y0 = Y(βp,ρp;ua, δva) = mu2
aρp, N0 = N(βp,ρp;ua, δva) = 0 (6.82)

The stability derivatives Yβ , Yρ , Nβ and Nρ are simply the partial derivatives

Yβ = ∂Y

∂β
, Yρ = ∂Y

∂ρ
, Nβ = ∂N

∂β
, Nρ = ∂N

∂ρ
(6.83)

all evaluated at (βp,ρp;ua, δva). Obviously, each stability derivative depends on
the whole set of chosen coordinates.

It is convenient to introduce the shifted coordinates

βt = β − βp and ρt = ρ − ρp (6.84)

into the linearized system of Eq. (6.81), thus getting

muaβ̇t = Yββt + (Yρ − mu2
a

)
ρt

Jzuaρ̇t = Nββt + Nρρt

(6.85)

where β̇ = β̇t and ρ̇ = ρ̇t . The same system of equations can be rewritten as

[
β̇t

ρ̇t

]
=

⎡
⎢⎢⎣

Yβ

mua

Yρ − mu2
a

mua

Nβ

Jzua

Nρ

Jzua

⎤
⎥⎥⎦
[
βt

ρt

]
= A
[
βt

ρt

]
(6.86)
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As a further analytical step, we can reformulate the problem as two identical
second order linear differential equations, one in ρt (t) and the other in βt (t)

ρ̈t + ρ̇t

(−mNρ − JzYβ

Jzmua

)
+ ρt

(
YβNρ − (Yρ − mu2

a)Nβ

Jzmu2
a

)

= ρ̈t − tr(A)ρ̇t + det(A)ρt

= ρ̈t + 2ζωnρ̇t + ω2
nρt = 0

= β̈t + 2ζωnβ̇t + ω2
nβt = 0 (6.87)

The solutions of (6.86) depend on two initial conditions, i.e. βt (0) and ρt (0).
From the same system of equations we get β̇(0) and ρ̇(0), which are the two ad-
ditional initial conditions needed in (6.87). Therefore, the two state variables have
identical oscillatory behavior, but are not independent from each other.

The matrix A in (6.86) has eigenvalues

λj = −ζωn ± ωn

√
ζ 2 − 1, j = 1,2 (6.88)

with

2ζωn = − tr(A) = −mNρ + JzYβ

Jzmua

= −(λ1 + λ2)

ω2
n = det(A) = YβNρ − (Yρ − mu2

a)Nβ

Jzmu2
a

= λ1λ2

(6.89)

From (6.89) we can also obtain the damping coefficient

ζ = − mNρ + JzYβ

2
√

Jzm

√
YβNρ − (Yρ − mu2)Nβ

(6.90)

and the natural angular frequency

ωs = ωn

√
1 − ζ 2 = mNρ + JzYβ

2Jzmu
−
√

YβNρ − (Yρ − mu2)Nβ

u
√

Jzm
(6.91)

In ordinary road cars, ωs is almost constant for moderate to high speeds.
All these equations show how the dynamical features of the dynamical system

depend on three stability derivatives (6.83) (since Yρ = Nβ ), besides m, Jz and ua .
The characterization of the vehicle requires knowledge of these stability derivatives.
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6.11.3 Stability

An equilibrium point can be either stable or unstable. A convenient way to assess
whether there is stability or not is looking at the eigenvalues (6.88). As well known

stability ⇐⇒ Re(λ1) < 0 and Re(λ2) < 0 (6.92)

that is, both eigenvalues must have a negative real part. A convenient way to check
this condition without computing the two eigenvalues is

stability ⇐⇒ (
λ1 + λ2 = tr(A)

)
< 0 and

(
λ1λ2 = det(A)

)
> 0 (6.93)

Typically, vehicles may become unstable because one of the two real eigenvalues
becomes positive.

6.11.4 Forced Oscillations (Driver Action)

Linearized systems can also be used to study the effect of small driver actions on
the forward speed and/or on the steering wheel angle to control the vehicle. More
precisely, we have u = ua + ut and δv = δva + δvt .

The linearized inertial terms in (6.77) are

m
(
uβ̇ + u̇β + u2ρ

)� m
(
uaβ̇ + u̇βp + u2

aρp + u2
aρt + 2uautρp

)
Jz(uρ̇ + u̇ρ) � Jz(uaρ̇ + u̇ρp)

(6.94)

where mu2
aρp = Y0, according to (6.78).

The linearized system becomes

m
(
uaβ̇t + u̇βp + u2

aρt + 2uaρput

)= Yββt + Yρρt + Yuut + Yδδvt

Jz(uaρ̇t + u̇ρp) = Nββt + Nρρt + Nuut + Nδδvt

(6.95)

where there are also four control derivatives

Yδ = ∂Y

∂δv

, Yu = ∂Y

∂u
, Nδ = ∂N

∂δv

, Nu = ∂N

∂u
(6.96)

evaluated, like the others, at the equilibrium point (βp,ρp;ua, δva). A better way to
write (6.95) is

muaβ̇t = Yββt + (Yρ − mu2
a

)
ρt + (Yu − 2muaρp)ut + Yδδvt − mβpu̇t

Jzuaρ̇t = Nββt + Nρρt + Nuut + Nδδvt − Jzρpu̇t

(6.97)
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which generalizes (6.85). The most intuitive case is the driver acting only on the
steering wheel, which is described by the simplified set of equations

muaβ̇t = Yββt + (Yρ − mu2
a

)
ρt + Yδδvt

Jzuaρ̇t = Nββt + Nρρt + Nδδvt

(6.98)

since ut = u̇ = 0.
In matrix notation (6.97) become

[
β̇t

ρ̇t

]
= A
[
βt

ρt

]
+ B

⎡
⎣ut

δvt

u̇

⎤
⎦= A
[
βt

ρt

]
+ b (6.99)

or, in an even more compact notation

ẇ = Aw + b (6.100)

Like in (6.87), we can recast the problem as two second order linear differential
equations, only apparently independent from each other

ρ̈t + 2ζωnρ̇t + ω2
nρt = −a22b1 + ḃ1 + a12b2 = Fβ

β̈t + 2ζωnβ̇t + ω2
nβt = −a11b2 + ḃ2 + a21b1 = Fρ

(6.101)

where

a11 = Yβ/(mua), a12 = (Yρ − mu2
a

)
/(mua)

a21 = Nβ/(Jzua), a22 = Nρ/(Jzua)
(6.102)

and

b1 = 1

mua

[
(Yu − 2muaρp)ut + Yδδvt − mβpu̇t

]

b2 = 1

Jzua

[Nuut + Nδδvt − Jzρpu̇t ]

ḃ1 = 1

mua

[
(Yu − 2muaρp)u̇t + Yδδ̇v − mβpüt

]

ḃ2 = 1

Jzua

[Nuu̇t + Nδδ̇v − Jzρpüt ]

(6.103)

Again, if the driver acts only on the steering wheel, like in (6.98), all these expres-
sions become much simpler

b1 = Yδ

mua

δvt , b2 = Nδ

Jzua

δvt , ḃ1 = Yδ

mua

δ̇v, ḃ2 = Nδ

Jzua

δ̇v (6.104)

The two equations (6.101) have identical values of ζ and ωn, but different forcing
terms.
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The obvious conclusion of this analysis is that the dynamics of a vehicle in the
neighborhood of an equilibrium point is fully characterized by a finite number of
stability derivatives and control derivatives. The key point is how to measure (iden-
tify) all these stability and control derivatives. Their knowledge would be a very
relevant practical information. The next section presents indeed a method to obtain
these data from steady-state tests.

6.12 Relationship Between Steady State Data and Transient
Behavior

Most classical vehicle dynamics deals with steady-state data. Understeer and over-
steer are steady-state concepts. Or they are not? This is a crucial question. What
does a professional driver mean when he/she complains about his car being un-
dersteer or oversteer? Does it have anything to do with the classical definition of
understeer/oversteer as discussed in Sect. 6.7.2?

Two aspects should be carefully taken into account. While the concepts of veloc-
ity, acceleration, mass, stability etc. arise in any branch of mechanics, why do the
concepts of understeer and oversteer only belong to vehicle dynamics? This is rather
surprising. Why are vehicles so special dynamical systems that they need concepts
conceived uniquely for them?

The other aspect is somehow more practical. Why should steady-state tests tell
us anything about the transient behavior of a vehicle? In more technical terms, why
should steady-state data be related to stability derivatives? Are they or not? If they
are related, what is the relationship?

This section is devoted to the investigation of the link between the universe of
steady-state data and the universe of dynamical, hence transient, behavior of a vehi-
cle. It will be shown that a link does indeed exist, but it is not direct, not to mention
obvious.

It is worth noting that this section is not strictly related to the single track model.
The theory developed here is applicable to real road vehicles.

The starting point is a sort of mathematical trick. At steady state, the lateral
force Y and the yawing moment N have very simple values, namely Y0 = mãy and
N0 = 0. Nevertheless, they can be given, as functions, the following expressions

Y0(ãy, δva) = Y
(
βp(ãy, δva), ρp(ãy, δva);ua(ãy, δva), δva

)= mãy

N0(ãy, δva) = N
(
βp(ãy, δva), ρp(ãy, δva);ua(ãy, δva), δva

)= 0
(6.105)

The key idea is taking the partial derivatives of the function Y0(ãy, δva), just
defined in (6.105), thus getting

∂Y0

∂ãy

= Yβ

∂βp

∂ãy

+ Yρ

∂ρp

∂ãy

+ Yu

∂ua

∂ãy

= m
∂ãy

∂ãy

= m

∂Y0

∂δva

= Yβ

∂βp

∂δva

+ Yρ

∂ρp

∂δva

+ Yu

∂ua

∂δva

+ Yδ = m
∂ãy

∂δva

= 0

(6.106)
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The same steps can be taken for the yawing moment N0(ãy, δva), getting

∂N0

∂ãy

= Nβ

∂βp

∂ãy

+ Nρ

∂ρp

∂ãy

+ Nu

∂ua

∂ãy

= 0

∂N0

∂δva

= Nβ

∂βp

∂δva

+ Nρ

∂ρp

∂δva

+ Nu

∂ua

∂δva

+ Nδ = 0

(6.107)

In a road vehicle, that is without significant aerodynamic vertical loads, it is
reasonable to assume Yu = Nu = 0, if we take β and ρ as state variables to describe
the vehicle motion. In other words, Y and N do not change if we modify only u,
keeping constant β , ρ and δv (cf. (6.24)). It would not be so in Formula cars, that is
in cars with aerodynamic wings.

The two equations in (6.106), with Yu = Nu = 0, yield the system of linear equa-
tions

⎧⎪⎪⎨
⎪⎪⎩

Yβ

∂βp

∂ãy

+ Yρ

∂ρp

∂ãy

= m

Yβ

∂βp

∂δva

+ Yρ

∂ρp

∂δva

= −Yδ

(6.108)

and, similarly, from (6.107)

⎧⎪⎪⎨
⎪⎪⎩

Nβ

∂βp

∂ãy

+ Nρ

∂ρp

∂ãy

= 0

Nβ

∂βp

∂δva

+ Nρ

∂ρp

∂δva

= −Nδ

(6.109)

These two systems of equations have the same matrix

[
βy ρy

βδ ρδ

][
Yβ

Yρ

]
=
[

m

−Yδ

]
and

[
βy ρy

βδ ρδ

][
Nβ

Nρ

]
=
[

0
−Nδ

]
(6.110)

whose coefficients are the four components of the gradients of the two steady-state
maps (6.80)

gradρp =
(

∂ρp

∂ãy

,
∂ρp

∂δv

)
= (βy,βδ) = −(Kρy ,Kρδ )

gradβp =
(

∂βp

∂ãy

,
∂βp

∂δv

)
= (ρy, ρδ) = −(Kβy ,Kβδ )

(6.66′)

After having performed the standard steady-state tests, all these gradient compo-
nents (already introduced in Sect. 6.7.2.1) are known functions.
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The four stability derivatives are the solution of the two systems of Eq. (6.110)

Yβ = Yδρy + mρδ

βyρδ − βδρy

, Yρ = − Yδβy + mβδ

βyρδ − βδρy

Nβ = Nδρy

βyρδ − βδρy

, Nρ = − Nδβy

βyρδ − βδρy

(6.111)

Therefore, they are known functions of the gradient components and of the control
derivatives Yδ and Nδ . This is a relevant result, as it shows why steady-state data can
indeed provide information about the transient behavior, although not in an obvious
way.

Now, we can go back to the linearized equations of motion (6.98). The stability
derivatives can be replaced by the expressions in (6.111), thus obtaining

muaβ̇t =
(

Yδρy + mρδ

βyρδ − βδρy

)
βt +
(

− Yδβy + mβδ

βyρδ − βδρy

− mu2
a

)
ρt + Yδδvt

Jzuaρ̇t =
(

Nδρy

βyρδ − βδρy

)
βt +
(

− Nδβy

βyρδ − βδρy

)
ρt + Nδδvt

(6.112)

where βt and ρt are the shifted coordinates defined in (6.84). These equations can
be rearranged to get

muaβ̇t + m

(
u2

aρt − βtρδ − ρtβδ

βyρδ − ρyβδ

)
= Yδ

(
βtρy − ρtβy

βyρδ − ρyβδ

)
+ Yδδvt

Jzuaρ̇t = Nδ

(
βtρy − ρtβy

βyρδ − ρyβδ

)
+ Nδδvt

(6.113)

Quite a remarkable result. It shows how the data collected in steady-state tests are
indeed informative about the dynamic (transient) behavior.

Moreover, it highlights the role of the control derivatives Yδ and Nδ . For instance,
let us consider a generalized step steering input, that is a sudden increase δvt of the
steering wheel angle δv applied to a vehicle in a steady-state (equilibrium) configu-
ration. We say “generalized” since it should and can be done from any steady-state
configuration, not necessarily from a straight line trajectory. Since, by definition
βt (0) = 0 and ρt (0) = 0, from (6.112) we obtain

Yδ

m
= uaβ̇(0)

δvt

and
Nδ

Jz

= uaρ̇(0)

δvt

(6.114)
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The two coefficients 2ζωn = −(λ1 + λ2) and ω2
n = λ1λ2 defined in (6.89) now

become

2ζωn = 1

ua(βyρδ − βδρy)

[(
Nδ

Jz

βy − Yδ

m
ρy

)
− ρδ

]
= − tr(A) = n1(ãy, δva)

ω2
n = 1

(βyρδ − βδρy)

Nδ

Jz

(
ρy − 1

u2
a

)
= det(A) = n2(ãy, δva)

(6.115)

Similarly, the two forcing terms Fβ and Fρ in (6.101) can be rewritten as

Fβ = − Nδ

Jzu2
a

(
βδ

βyρδ − βδρy

+ u2
a

)
δvt + Yδ

mua

δ̇v

= n3(ãy, δva)δvt + n4(ãy, δva)δ̇v (6.116)

and

Fρ = − Nδ

Jzu2
a

(
ρδ

βyρδ − βδρy

)
δvt + Nδ

Jzua

δ̇v

= n5(ãy, δva)δvt + n6(ãy, δva)δ̇v (6.117)

Equations (6.115), (6.116) and (6.117) show that the dynamic behavior of a road
vehicle in the neighborhood of an equilibrium point is fully described by six “magic
functions” ni(ãy, δva). To help the reader, these six numbers are listed below:

n1(ãy, δva) = 1

ua(βyρδ − βδρy)

[(
Nδβy

Jz

− Yδρy

m

)
− ρδ

]
= 2ζωn

n2(ãy, δva) = 1

(βyρδ − βδρy)

Nδ

Jz

(
ρy − 1

u2
a

)
= ω2

n

n3(ãy, δva) = − Nδ

Jzu2
a

(
βδ

βyρδ − βδρy

+ u2
a

)
(6.118)

n4(ãy, δva) = Yδ

mua

n5(ãy, δva) = − Nδ

Jzu2
a

(
ρδ

βyρδ − βδρy

)

n6(ãy, δva) = Nδ

Jzua

We remark that all these quantities are, ultimately, combinations of the following
six fundamental “bricks”:

s1 = βy, s2 = ρy, s3 = βδ, s4 = ρδ, s5 = Nδ

Jz

, s6 = Yδ

m
(6.119)
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all of them, in general, functions of two variables like, e.g., ãy and δv . Two vehicles
with the same si , and hence with the same ni , have identical handling behavior,
notwithstanding their size, weight, etc. In other words, they react in exactly the
same way to given driver input.

On the practical side, we see that the components of the gradients (6.66) of the
steady-state maps βp(ãy, δv) and ρp(ãy, δv) provide four out of six “bricks”, the
other two being the control derivatives. Therefore, there is indeed a relationship
between steady-state data and transient behavior of a vehicle. However, this rela-
tionship is far from obvious.

6.13 New Understeer Gradient

Let us discuss the new understeer gradient ρy = −Kρy in detail

ρy = ∂ρp

∂ãy

= ∂

∂ãy

(
1

R

)
= −K

l
= −Kρy (6.120)

This is similar to the definition of the classical understeer gradient K , but with a
few fundamental differences. The definition of Kρy does not involve any weak con-
cept, like the wheelbase l or the Ackermann steer angle, as discussed in Sect. 6.9.
Moreover, as will be shown in Sect. 6.15.1, it is the correct measure of under-
steer/oversteer, while K is not. This may look a bit surprising, but that is the way
it is.

In general

Kρy = Kρy (ãy, δva) (6.121)

except in some noteworthy cases, like the single track model with open differential,
where, according to (6.67), Kρy = Kρy (ãy) = dfρ/dãy .

But there are other reasons that support Kρy as a good handling parameter. Let us
consider a constant steering wheel test and monitor the yaw rate rp = rp(ua; δva) as
a function of the forward speed ua , keeping constant the steering wheel angle δva .
For brevity, let r ′

p = drp/dua . Equation (6.120) can be rewritten as

dρp

dãy

= d(rp/ua)

d(rpua)
= d(rp/ua)

dua

(
d(rpua)

dua

)−1

= 1

u2
a

(
r ′
pua − rp

r ′
pua + rp

)
= −Kρy

(6.122)
This general equation provides a way to obtain the critical speed and the charac-
teristic speed. The characteristic speed uchar is, by definition, the speed at which
r ′
p = 0. By letting r ′

p → 0 in (6.122), we obtain that the characteristic speed must
satisfy the following equation

1

u2
a

= Kρy that is uchar =
√

1

Kρy

(6.123)
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Similarly, the critical speed ucr is, by definition, the speed at which r ′
p → ∞, which

means

1

u2
a

= −Kρy that is ucr =
√

− 1

Kρy

(6.124)

Summing up:

• Kρy has been defined without any recourse to weak concept, like a reference
vehicle having Ackermann steer;

• Kρy can be easily measured in constant steering wheel tests;
• the critical speed and the characteristic speed come out naturally as special

cases.10

A similar treatment applies to the other gradient component βy = −Kβy . In this
case vp = vp(ua; δva), thus getting

βy = dβp

dãy

= d(vp/ua)

d(uarp)
= 1

u2
a

(
v′
pua − vp

r ′
pua + rp

)
= −Kβy (6.125)

In general

Kβy = Kβy (ãy, δva) (6.126)

except in cases like the single track model with open differential, where, according
to (6.67), Kβy = Kβy (ãy) = dfβ/dãy .

6.14 Stability (Again)

According to (6.93), an equilibrium point is stable if and only if tr(A) < 0 and
det(A) > 0. These two conditions, after (6.115), can be expressed in terms of the six
fundamental bricks (6.119) and the forward speed.

6.15 The Single Track Model Revisited

The suggested approach, which explains why steady-state data are also relevant for
the transient behavior, is applied here to the single track model. The goal is to clarify
the matter by an example.

10Actually, the real critical speed can be lower than the value predicted by (6.124), as shown in
[5, pp. 216–219]. Basically, (6.124) may not predict the right value because in real vehicles we
control the longitudinal force, not directly the forward speed. Therefore, a real vehicle is a system
with three state variables, not just two. This additional degree-of-freedom does affect the critical
speed, unless the vehicle is going straight.
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For simplicity, we assume u = ua and u̇ = 0 and hence start with the linearized
equations of motion (6.98). In the single track model (with open differential), the
stability derivatives (6.83) can be given a more explicit form (cf. (6.59)) taking into
account the axle characteristics

Yβ = ∂Y1

∂α1

∂α1

∂β
+ ∂Y2

∂α2

∂α2

∂β
= −∂Y1

∂α1
− ∂Y2

∂α2
= −Φ1 − Φ2

Yρ = ∂Y1

∂α1

∂α1

∂ρ
+ ∂Y2

∂α2

∂α2

∂ρ
= −a1

∂Y1

∂α1
+ a2

∂Y2

∂α2
= −a1Φ1 + a2Φ2

(6.127)

and

Nβ = a1
∂Y1

∂α1

∂α1

∂β
− a2

∂Y2

∂α2

∂α2

∂β
= −a1

∂Y1

∂α1
+ a2

∂Y2

∂α2
= −a1Φ1 + a2Φ2

Nρ = a1
∂Y1

∂α1

∂α1

∂ρ
− a2

∂Y2

∂α2

∂α2

∂ρ
= −a2

1
∂Y1

∂α1
− a2

2
∂Y2

∂α2
= −a2

1Φ1 − a2
2Φ2

(6.128)

where

Φ1 = ∂Y1

∂α1
and Φ2 = ∂Y2

∂α2
(6.129)

are the slopes of the axle characteristics at the equilibrium point. Obviously, Φi > 0
in the monotone increasing part of the axle characteristics. These slopes are simple
to be defined, but not so simple to be measured directly. It is also worth noting that

Yρ = Nβ (6.130)

To proceed further, let

δ1 = τ1δv and δ2 = τ2δv = χτ1δv (6.131)

thus linking the rear steering to the front steering. To have front steering only it
suffices to set χ = 0. We can now obtain also the more explicit expressions of the
control derivatives

Yδ = (Φ1 + χΦ2)τ1, Nδ = (Φ1a1 − χΦ2a2)τ1 (6.132)

Therefore, the linearized equations of motions (6.98) are as follows, where Y and
N do not depend on u

m
(
uaβ̇t + u2

aρt

)= −(Φ1 + Φ2)βt − (Φ1a1 − Φ2a2)ρt + (Φ1 + χΦ2)τ1δvt

Jzuaρ̇t = −(Φ1a1 − Φ2a2)βt − (Φ1a
2
1 + Φ2a

2
2

)
ρt + (Φ1a1 − χΦ2a2)τ1δvt

(6.133)

Formulæ (6.89) become, in this case

2ζωn = − tr(A) = 1

ua

(
Φ1 + Φ2

m
+ Φ1a

2
1 + Φ2a

2
2

Jz

)
(6.134)
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and

ω2
n = det(A) = 1

u2
amJz

[
Φ1Φ2(a1 + a2)

2 − mu2
a(Φ1a1 − Φ2a2)

]
(6.135)

and hence

ζ = (Φ1 + Φ2)Jz + (Φ1a
2
1 + Φ2a

2
2)m

2
√

Jzm
√

Φ1Φ2l2 − mu2(Φ1a1 − Φ2a2)
(6.136)

These parameters characterize the handling behavior in the neighborhood of an equi-
librium point. Actually, the fundamental “bricks” on which everything is built are
the six design parameters

Φ1

m
,

Φ2

m
, a1, a2,

Jz

m
, χ (6.137)

in addition to the control parameters u and δv(t), with constant u (τ1 has no rele-
vance).

At steady-state, the linearized equations of motion become a linear algebraic
system of equations

mãy = mu2
aρp = −(Φ1 + Φ2)βp − (Φ1a1 − Φ2a2)ρp + (Φ1 + χΦ2)τ1δva

0 = −(Φ1a1 − Φ2a2)βp − (Φ1a
2
1 + Φ2a

2
2

)
ρp + (Φ1a1 − χΦ2a2)τ1δva

(6.138)

which, when solved, provides the (linear approximation of the) handling maps in
the neighborhood of the equilibrium point (cf. (6.80))

βp = βp(ãy, δva) = vp

ua

=
(

a2 + a1χ

l

)
τ1δva − m

l2

(
Φ1a

2
1 + Φ2a

2
2

Φ1Φ2

)
ãy

ρp = ρp(ãy, δva) = rp

ua

=
(

1 − χ

l

)
τ1δva − m

l2

(
Φ2a2 − Φ1a1

Φ1Φ2

)
ãy

(6.139)

We remark that this is a local linear approximation of the handling maps. In the
suggested approach, these two maps fully describe the vehicle handling features at
steady state.

The components of the gradients gradβp and gradρp (defined in (6.66)) are
therefore given by

βy = −m

l2

(
Φ1a

2
1 + Φ2a

2
2

Φ1Φ2

)
= −Kβy , βδ = τ1

(
a2 + χa1

l

)
= −Kβδ

ρy = −m

l2

(
Φ2a2 − Φ1a1

Φ1Φ2

)
= −Kρy , ρδ = τ1

(
1 − χ

l

)
= −Kρδ

(6.140)

As already stated, all these components can be obtained experimentally from stan-
dard steady-state tests, without having to bother about Ackermann steer angle and
the like.
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From the results displayed in the first column in (6.140) we get

Φ1

m
= a2

l(Kβy + a1Kρy )
,

Φ2

m
= a1

l(Kβy − a2Kρy )
(6.141)

which show that there may exist different vehicles with exactly the same values of
Kβy = −βy and Kρy = −ρy . Therefore, more than two parameters are necessary.

Summing up, for the single track model, the six coefficients si in (6.119) are

s1 = βy = − m

(a1 + a2)2

(
Φ2a

2
2 + Φ1a

2
1

Φ1Φ2

)
= −Kβy

s2 = ρy = − m

(a1 + a2)2

(
Φ2a2 − Φ1a1

Φ1Φ2

)
= −Kρy

s3 = βδ = τ1
a2 + χa1

a1 + a2

s4 = ρδ = τ1
1 − χ

a1 + a2

s5 = Nδ

Jz

= τ1
Φ1a1 − χΦ2a2

Jz

s6 = Yδ

m
= τ1

C1 + χΦ2

m

(6.142)

Of course, they depend on the six design parameters listed in (6.137): Φ1/m, Φ2/m,
a1, a2, Jz/m, χ .

Assuming χ as given, we obtain from the first four equations in (6.142)

Φ1

m
= ρδ(βδ − χτ1)

τ1(χ − 1)[βyρδ − ρy(βδ − τ1)] = s4(s3 − χτ1)

τ1(χ − 1)[s1s4 − s2(s3 − τ1)]
Φ2

m
= ρδ(τ1 − βδ)

τ1(χ − 1)[βyρδ − ρy(βδ − χτ1)] = s4(τ1 − s3)

τ1(χ − 1)[s1s4 − s2(s3 − χτ1)]
(6.143)

a1 = τ1 − βδ

ρδ

= τ1 − s3

s4

a2 = βδ − χτ1

ρδ

= s3 − χτ1

s4

Then, also considering the fifth equation

Jz

m
= 1

s5

(βyρδ − ρyβδ)(βδ − χτ1)(βδ − τ1)

[βyρδ − ρy(βδ − τ1)][βyρδ − ρy(βδ − χτ1)] (6.144)

In the single track model there are not enough design parameters to fulfill all six
equations. Therefore, the value of s6 depends on the other five parameters si , i =
1, . . . ,5.
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184 6 Handling of Road Cars

Table 6.1 Features of vehicles with different amounts of rear steering χ , but with almost identical
transient handling behavior. The old understeer gradient K conveys misleading information

χ C1
[N/rad]

C2
[N/rad]

a1
[m]

a2
[m]

Jz

[kg m2]
m

[kg]
K

[deg/g]
Kρy

[deg/g]

−0.10 76 629 93 559 0.91 1.93 3 169 1 365 4.16 1.46

−0.05 74 900 91 452 0.91 1.80 2 759 1 365 3.97 1.46

0.00 73 000 90 000 0.91 1.67 2 400 1 365 3.78 1.46

+0.05 70 899 89 144 0.91 1.54 2 084 1 365 3.59 1.46

+0.10 68 565 88 851 0.91 1.41 1 803 1 365 3.40 1.46

6.15.1 Different Vehicles with Almost Identical Handling

It is kind of interesting to employ Eqs. (6.143) and (6.144) to obtain Φ1/m, Φ2/m,
a1, a2 and Jz/m for given s1–s5, but different values of χ , that is with a different
amount of rear steering. This way, it is possible to create vehicles that look very
different, but which ultimately have almost exactly the same handling behavior. The
little difference being due to the term s6 that cannot be set to the same value for all
vehicles, due to the lack of parameters in the single track model.

A vehicle with front steering only has χ = 0, while, e.g., χ = −0.05 means a
rear steering angle δ2 = −0.05δ1, and so on.

But, let us do some numerical examples. Let us consider a vehicle with only front
steering (i.e., χ = 0), with the following features:

• m = 1 365 kg;
• Jz = 2 400 kg m2;
• a1 = 0.912 m;
• a2 = 1.668 m;
• Φ1 = C1 = 73 000 N/rad;
• Φ2 = C2 = 90 000 N/rad.

From (6.142) we can compute all si for this vehicle.
Then we can set a non-zero value for χ and, employing the very same values of

s1, s2, s3, s4 and s5, compute the corresponding physical quantities C1, C2, a1, a2,
Jz and m, according to (6.143) and (6.144). The results for some values of χ are
shown in Table 6.1. The five vehicles there reported are strikingly different, yet they
have (almost) the same handling behavior, and not limited to steady state. For the
driver, they behave quite the same way even under transient conditions, like under a
step steering input.

The amazing similarity of the handling dynamics between these five vehicles can
be appreciated looking at Figs. 6.34, 6.35, 6.36 and 6.37, where the time-histories of
some variables are shown and compared. All figures refer to a step steer δ1 = 2.2◦,
with u = 30 m/s, starting from a straight trajectory.

But perhaps the most astonishing result is that these vehicle, although with almost
identical handling, do not have the same understeer gradient K . Just have a look at
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Fig. 6.34 Vehicle slip angle
β(t) after a step steering input

Fig. 6.35 Yaw rate r(t) after
a step steering input

Fig. 6.36 Derivative v̇(t)

of the lateral speed after a
step steering input

Fig. 6.37 Lateral
acceleration ay(t) = v̇ + ur

after a step steering input
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the next to last column in Table 6.1. In other words, they would have been classified
as very different if evaluated in terms of their understeer gradient K .

The conclusion is that the classical understeer gradient is not a good parameter
and should be abandoned. It should be replaced by the gradient components pro-
posed in (6.66) and discussed in Sect. 6.13, which have proven to really provide
a measure of the dynamic features of a vehicle. In particular, the gradient com-
ponent Kρy , shown in the last column in Table 6.1, is the real measure of under-
steer/oversteer.

6.16 Road Vehicles with Locked or Limited Slip Differential

The handling of road cars equipped with either a locked or a limited slip differential
is addressed in Sect. 7.5, that is in the chapter devoted to race car handling behavior.
This has been done because the limited slip differential is a peculiarity of almost all
race cars, whereas very few road cars have it.

6.17 Linear Single Track Model

The simplest dynamical systems are those governed by linear ordinary differential
equations with constant coefficients. The single track model of Fig. 6.1 is governed
by the nonlinear ordinary differential equations (6.111), unless the axle character-
istics are replaced by linear functions

Y1 = C1α1 and Y2 = C2α2 (6.145)

where

C1 = dY1

dα1

∣∣∣∣
α1=0

and C2 = dY2

dα2

∣∣∣∣
α2=0

(6.146)

The axle lateral slip stiffness Ci is usually equal to twice the tire lateral slip stiffness,
firstly introduced in (2.77). It is affected by the static vertical load (Fig. 2.18), but
not by the load transfer, neither by the amount of grip. The influence of roll steer is
quite peculiar (Fig. 6.6).

However, as shown in Fig. 6.38, this linear approximation is acceptable only if
|αi | < 2◦, that is for very low values of ay .

The main advantage of the linear single track model is its simplicity, the main
disadvantage is that it does not model the vehicle behavior at all, unless the lateral
acceleration is really small (typically, ay < 0.2 g on dry asphalt). In some sense, it
is a “dangerous” model because you may be tempted to use it outside its range of
validity.

Nevertheless, in some cases it is useful to have a model where everything can be
obtained analytically.
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6.17 Linear Single Track Model 187

Fig. 6.38 Linear
approximation of the axle
characteristics

6.17.1 Governing Equations

The linear single track model differs from the more general nonlinear model only
for the constitutive equations. However, we list here all relevant equations, that is
equilibrium equations

m(v̇ + ur) = Y = Y1 + Y2

Jzṙ = N = Y1a1 − Y2a2
(6.147)

congruence equations (with |χ | � 1, and often equal to zero)

α1 = τ1δv − v + ra1

u

α2 = χτ1δv − v − ra2

u

(6.148)

and the linear constitutive equations

Y1 = C1α1

Y2 = C2α2
(6.149)

Combining congruence and constitutive equations we get

Y1 = C1α1 = C1

(
τ1δv − v + ra1

u

)

Y2 = C2α2 = C2

(
τ1χδv − v − ra2

u

) (6.150)

which are linear in v and r , but not in u.
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Inserting these equations into the equilibrium equations, we obtain the governing
equations, that is two linear differential equations

v̇ = −
(

C1 + C2

mu

)
v −
(

C1a1 − C2a2

mu
+ u

)
r + C1 + χC2

m
τ1δv

ṙ = −
(

C1a1 − C2a2

Jzu

)
v −
(

C1a
2
1 + C2a

2
2

Jzu

)
r + C1a1 − χC2a2

Jz

τ1δv

(6.151)

In matrix notation, (6.151) becomes

ẇ = Aw + bδv (6.152)

where w(t) = (v(t), r(t)) is the vector of state variables, the r.h.s. known vector is

b(t) = τ1

⎡
⎣

C1+χC2
m

C1a1−χC2a2
Jz

⎤
⎦ (6.153)

and

A = A
(
u(t)
)= −
⎡
⎣

C1+C2
mu

C1a1−C2a2
mu

+ u

C1a1−C2a2
Jzu

C1a
2
1+C2a

2
2

Jzu

⎤
⎦ (6.154)

is the coefficient matrix. It is important to note that A depends on the forward
speed u, but not on the steer angle δv , which multiplies the known vector b.

6.17.2 Solution for Constant Forward Speed

As well known, the general solution w(t) of (6.152) is given by the solution wo of
the homogeneous equation plus a particular solution wp

w(t) = wo(t) + wp(t) (6.155)

Unfortunately, analytical solutions are not available if u(t) �= const.
If u is constant (u̇ = 0), the system (6.152) has constant coefficients and the

homogeneous solution must fulfill, with a constant matrix A

ẇo = Awo (6.156)

Assuming constant u is therefore a very relevant assumption. We look for a solution
among the exponential functions

wo(t) = (vo(t), ro(t)
)= xeλt (6.157)
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which implies ẇo(t) = λxeλt , and consequently yields an eigenvalue problem for
the matrix A

Ax = λx (6.158)

The eigenvalues are the solutions of the characteristic equation

det(A − λI) = 0 (6.159)

that, for a (2 × 2) matrix, becomes

λ2 − tr(A)λ + det(A) = 0 (6.160)

The two eigenvalues λ1 and λ2 are

λ1,2 = tr(A) ±√tr(A)2 − 4 det(A)

2
= −ζωn ± ωn

√
ζ 2 − 1 (6.161)

If the discriminant is negative, that is if ζ < 1, the dynamical system is underdamped
and the eigenvalues are complex conjugates.

From (6.154) we get the trace

tr(A) = − 1

u

(
C1 + C2

m
+ C1a

2
1 + C2a

2
2

Jz

)
< 0 (6.162)

and the determinant

det(A) = 1

u2mJz

[
C1C2(a1 + a2)

2 − mu2(C1a1 − C2a2)
]

(6.163)

These two quantities are very important because they provide handy information
about the two eigenvalues λ1 and λ2 of A, since

tr(A) = λ1 + λ2 (6.164)

det(A) = λ1λ2 (6.165)

These two relationships can be obtained easily writing the characteristic equation as
(λ − λ1)(λ − λ2) = 0.

Once the two eigenvalues have been obtained, we can compute the two eigenvec-
tors x1 and x2.

Therefore, the solution of the homogeneous system is

wo(t) = γ1x1eλ1t + γ2x2eλ2t (6.166)

where γ1 and γ2 are still to be determined constants. In components we have

vo(t) = γ1x11eλ1t + γ2x12eλ2t

ro(t) = γ1x21eλ1t + γ2x22eλ2t
(6.167)

where x1 = (x11, x21) and x2 = (x12, x22).
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The particular integral wp(t) = (vp(t), rp(t)) depends on the known vector b and
on the steering wheel angle δv(t). The simplest case is for constant δv , but analytical
solutions are available also when δv(t) is a polynomial or a trigonometric function.

Summing up, the general solution of the system (6.152) is

w(t) = wo(t) + wp(t) = γ1x1eλ1t + γ2x2eλ2t + wp(t) (6.168)

in which the two constants γ1 and γ2 appear to be determined from the initial con-
ditions w(0) = (v(0), r(0)), that is solving the system

Sy = w(0) − wp(0) (6.169)

where y = (γ1, γ2) and S is the matrix whose columns are the two eigenvectors of A.

6.17.3 Critical Speed

The two parts wo and wp of the general solution have distinct physical meanings.
The particular integral is what the vehicle does asymptotically, that is basically at
steady-state. The solution of the homogeneous system shows how the vehicle be-
haves before reaching the steady-state condition, if the vehicle is stable.

As already discussed in Sect. 6.11.3, the stability of the vehicle is completely
determined by the two eigenvalues λ1 and λ2, or better, by the sign of their real parts
Re(λ1) and Re(λ2). The rule is very simple: the system is asymptotically stable if
and only if both eigenvalues have negative real parts

stability ⇐⇒ Re(λ1) < 0 and Re(λ2) < 0 (6.170)

If just one eigenvalue has a positive real part, the corresponding exponential solution
grows without bound in time, and the system is unstable.

Fortunately, we can check the stability without computing the two eigenvalues
explicitly, but simply looking at (6.164) and (6.165). To have an asymptotically
stable vehicle it suffices to check that

stability ⇐⇒ tr(A) < 0 and det(A) > 0 (6.171)

From (6.162) we see immediately that tr(A) < 0 is always fulfilled. Stability is
therefore completely due to the second condition in (6.171). Setting det(A) = 0 in
(6.135) yields an equation in the unknown forward speed u, whose solution, if it
exists, is the critical speed ucr

ucr =
√

C1C2l2

m(C1a1 − C2a2)
(6.172)

Beyond the critical speed the vehicle becomes unstable. It is worth noting that ucr
does not depend on Jz.
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In the linear single track model, the critical speed exists if and only if

C1a1 − C2a2 > 0 (6.173)

That is, if the vehicle is oversteer. In this vehicle model (which, we recall, has a very
limited range of applicability), the critical speed is not affected by the steer angle.

6.17.4 Transient Vehicle Behavior

It may be of some interest to know how the eigenvalues evolve as the speed
changes. To this end, it is useful to plot tr(A) vs det(A), which, according to (6.162)
and (6.163), can be compactly expressed as11

det(A) = α

u2
+ β, tr(A) = −γ

u
(6.174)

where α and γ are always positive, while β = (C2a2 − C1a1)/Jz can be either be
positive or negative, depending on the vehicle being understeer or oversteer, respec-
tively.

Both functions are monotone increasing in u (if u > 0). They can be combined
to get

det(A) = α

γ 2
tr(A)2 + β (6.175)

Moreover, it is easy to show that

lim
u→+∞ tr(A) = 0−, lim

u→+∞ det(A) = β (6.176)

Therefore, as u grows, we draw parabolas, as shown in Fig. 6.39, up to their vertex
in (0, β).

Also plotted in Fig. 6.39 is the parabola det = tr2 /4. According to (6.161), it
corresponds to the points where λ1 = λ2. Below this parabola the two eigenvalues
are real, whereas above it they are complex conjugates to each other.

It can be shown that
(

α

γ 2
= C1C2k

2l2

[k2(C1 + C2) + C1a
2
1 + C2a

2
2]2

)
≤ 1

4
(6.177)

where Jz = mk2. Since it attains its maximum value 1/4 when C1a1 = C2a2 (neutral
vehicle) and Jz = ma1a2, we see that all vehicles at sufficiently low speed have real
negative eigenvalues.

As the speed increases, there can be the following possible evolutions. An over-
steer vehicle (actually, an oversteer linear single track model) has always two real

11Here α, β and γ are just constants. They have no connection with slip and camber angles.
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Fig. 6.39 Evolution of
det(A) and tr(A) when u

grows

eigenvalues. When the parabola in Fig. 6.39 crosses the horizontal axis (det = 0),
one eigenvalue becomes positive and the vehicle becomes unstable. That happens
for u = ucr.

An understeer vehicle has two negative real eigenvalues at low speed. For
speeds higher than u = ut they become complex conjugate with negative real parts
(Fig. 6.39): λ1 = −ζωn + iωn

√
1 − ζ 2, λ2 = −ζωn − iωn

√
1 − ζ 2. Therefore, at

sufficiently high speed, the transient motion is a damped oscillation (very damped,
indeed). The speed ut is given by

ut =
√

γ 2 − 4α

4β
=
√

[Jz(C1 + C2) + m(C1a
2
1 + C2a

2
2)]2 − 4JzmC1C2l2

4m2Jz(C2a2 − C1a1)
(6.178)

From Fig. 6.40, we see that the imaginary part of the eigenvalues, that is the angu-
lar frequency ωs = ωn

√
1 − ζ 2, is almost constant up to relatively high speeds. This

is typical and makes the classical sine sweep test quite insensitive to the selected
speed.

The general solution is given by (6.168). However, when the eigenvalues are
complex conjugates, also the eigenvectors x1 and x2 and the constants γ1 and γ2 are
complex conjugates. Having to deal with so many complex numbers to eventually
get a real function w(t) is not very convenient. Fortunately, we can rearrange it in
a way that it involves only real numbers. As well known, e(ζ+iω)t = eζ t [cos(ωt) +
i sin(ωt)], and the general solution can be written as

w(t) = wo(t) + wp(t)

= γ1x1eλ1t + γ2x2eλ2t + wp(t)

= e−ζωnt
[
(γ1x1 + γ2x2) cos(ωst) + i(γ1x1 − γ2x2) sin(ωst)

]+ wp(t)

= e−ζωnt
[
z1 cos(ωst) + z2 sin(ωst)

]+ wp(t) (6.179)

where ωs = ωn

√
1 − ζ 2.

To obtain z1 and z2 we can proceed as follows. Vector z1 is simply obtained
setting t = 0 in the last expression in (6.179)

z1 = w(0) − wp(0) (6.180)
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Fig. 6.40 Evolution of the
real part and of the imaginary
part of λ1 and λ2 as functions
of the forward speed u, for an
understeer vehicle

where w(0) is the vector of the initial conditions. To obtain the other vector, just
consider that

ẇo(0) = Awo(0) = −ζωnz1 + ωsz2 = z1 (6.181)

and hence

z2 = 1

ωs

(A + ζωnI)z1 (6.182)

6.17.5 Steady-State Behavior: Steering Pad

As already stated, the particular integral wp(t) = (vp(t), rp(t)) is determined, in this
linear model, by the known vector b, and hence by the function δv(t). The simplest
case is when δv = const.

Keeping the steering wheel in a fixed position and driving at constant speed
makes the vehicle go round in a circle. This is called steering pad. To obtain the
steady-state solution, we have to solve the system

−Awp = bδv (6.183)
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thus getting

vp = [C1C2l(a2 + a1χ) − mu2(C1a1 − C2a2χ)]u
C1C2l2 − mu2(C1a1 − C2a2)

τ1δv

rp = C1C2l(1 − χ)u

mJu2 det(A)
τ1δv = C1C2l(1 − χ)u

C1C2l2 − mu2(C1a1 − C2a2)
τ1δv

(6.184)

Once we have obtained vp and rp , we can easily compute all other relevant quan-
tities, like the vehicle slip angle βp and the Ackermann angle γp = l/Rp

βp = vp

u
= a2 + a1χ

l
τ1δv − ãy

m

l2

(
C1a

2
1 + C2a

2
2

C1C2

)
= Sp

Rp

γp = lrp

u
= (1 − χ)τ1δv − ãy

m

l

(
C2a2 − C1a1

C1C2

)
= l

Rp

(6.185)

According to (6.148), we can compute the steady-state front and rear slip angles

α1p = τ1δv − vp + rpa1

u
= ma2

lC1
ãy

α2p = χτ1δv − vp − rpa2

u
= ma1

lC2
ãy

(6.186)

A non-zero lateral speed vp at steady state may look a bit strange, at first sight. It
simply means that the trajectory of G is not tangent to the vehicle longitudinal axis.
As shown in Fig. 6.9(a), at low lateral acceleration we have very small slip angles
α1p and α2p and, as a consequence, βp has the same sign as δv . At high lateral
acceleration, the large slip angles cause βp to become of opposite sign with respect
to δv , as shown in Fig. 6.9(b).

The speed uβ that makes βp = vp = 0 is given by (6.184) and is equal to (if
χ = 0)

uβ =
√

C2a2l

a1m
(6.187)

It is called tangent speed.

6.17.6 Lateral Wind Gust

It is of some practical interest to study the behavior of a vehicle (albeit a very linear
one) when suddenly subjected to a lateral force, like the force due to a lateral wind
gust hitting the car when, e.g., exiting a tunnel. Actually, the same mathematical
problem also covers the case of a car going straight along a banked road.
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We have only to modify the equilibrium equations (6.147) by adding a lateral
force Fl = −Flj, applied at a distance x from G

m(v̇ + ur) = Fy1 + Fy2 − Fl

Jzṙ = Fy1a1 − Fy2a2 − Flx.
(6.188)

where x > 0 if Fl is applied along a line closer to the front axle than G. The other
equations are non affected directly by Fl .

The equations of motion are like in (6.152), with the only difference that the term

bF = −
[

1/m

x/J

]
Fl (6.189)

must be added to the known vector.
The steady-state conditions wp are obtained, as usual, by solving the system of

equations −Awp = bF , with A as given in (6.154).
If we assume δv = 0, we have the following quantities at steady-state

vp = [x(C1a1 − C2a2 + mu2) − (C1a
2
1 + C2a

2
2)]u

C1C2l2 − mu2(C1a1 − C2a2)
Fl

rp = [C1a1 − C2a2 − x(C1 + C2)]u
C1C2l2 − mu2(C1a1 − C2a2)

Fl = −y(C1 + C2)u

C1C2l2 − mu2(C1a1 − C2a2)
Fl

(6.190)

where we set

x = e + y

with

e = C1a1 − C2a2

C1 + C2
(6.191)

Should the steer angle be non-zero, it suffices to superimpose the effects. This is
legitimate because of the linearity of the equations.

This quantity e in (6.191) is often called static margin. The yaw rate is zero, that
is rp = 0, if and only if the lateral force is applied at a distance e from G. This is
the distance that makes the vehicle translate diagonally under the action of a lateral
force, as shown in Fig. 6.41. The point Np on the axis of the vehicle at a distance e

from G is called neutral steer point.
Obviously, the condition rp = 0 with δv = 0 is equivalent to α1p = α2p = αp .

Inserting this condition into (6.188) we get

0 = (C1 + C2)αp − Fl

0 = (C1a1 − C2a2)αp − Fle
(6.192)

which provide another way to obtain e.
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Fig. 6.41 Lateral force
applied at the neutral point
(x = e)

Fig. 6.42 Lateral force
applied at a point ahead of the
neutral point (x > e)
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Fig. 6.43 Lateral force applied at a point behind the neutral point (x < e)

An oversteer vehicle has e > 0, whereas e < 0 in an understeer vehicle. In a
medium size road car, we have e/l � −0.06.

If δv = 0, the steady-state distance Rp is

Rp = u

rp
= C1C2l

2 − mu2(C1a1 − C2a2)

−y(C1 + C2)Fl

(6.193)

The numerator is always positive if u < ucr. Therefore, Rp > 0 if y < 0 and vice
versa.

If the point of application of the lateral force is located ahead of the neutral point,
the vehicle behaves like in Fig. 6.42, turning in the same direction as the lateral
force. This is commonly considered good behavior.

If the point of application of the lateral force is behind the neutral point, the
vehicle behaves like in Fig. 6.43. This is commonly considered bad behavior.

Of course, since an oversteer vehicle has a neutral point ahead of G, the like-
lihood that a wind gust applies a force behind the neutral point is stronger, much
stronger, than in an understeer vehicle.

To understand why the first case is considered good, while the second is consid-
ered bad, we have to look at the lateral forces that the tire have to exert. In the first
case, the inertial effects counteract the wind gust, thus alleviating the tire job. In the
second case, the inertial effects add to the lateral force, making the tire job harder.

www.cargeek.ir

www.cargeek.ir

http://www.cargeek.ir/
http://www.cargeek.ir/


198 6 Handling of Road Cars

Fig. 6.44 Understeer ad
oversteer vehicles going
straight on a banked road

6.17.7 Banked Road

A car going straight on a banked road is subject to a lateral force due to its own
weight. Therefore, it is a situation somehow similar to a lateral wind gust, but not
equal. The main difference is that the lateral force is now applied at G.

Understeer and oversteer vehicles behave differently, as shown in Fig. 6.44. Both
axles must exert lateral forces directed uphill to counteract the weight force mg sin ε.
Therefore, both must work with positive slip angles, like in Fig. 6.44. However, due
to the different location of the neutral point Np with respect to G, the two axles
cannot have the same slip angle. To go straight, we must steer the front wheels
uphill in an understeer vehicle and downhill in an oversteer vehicle, as in Fig. 6.44.

6.18 Compliant Steering System

Many modern cars use rack and pinion steering mechanisms. The steering wheel
turns the pinion gear, which moves the rack, thus converting circular motion into
linear motion. This motion applies steering torque to the front wheels via tie rods
and a short lever arm called the steering arm.

So far we have assumed the steering system to be perfectly rigid, as stated at
p. 47. More precisely, Eq. (3.123) have been used to relate the steer angles δij of
each wheel to the angle δv of the steering wheel.

In the single track model (Fig. 6.1) we have taken a further step, assuming that
the left and right gear ratio of the steering system are almost equal, that is

(τ11 = τ12) = τ1 and (τ21 = τ22) = τ2 (6.22′)
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Fig. 6.45 Single track model
with compliant steering
system

thus getting (6.74)

(1 + χ̂ )δ = δ1 = τ1δv

χ̂δ = δ2 = τ2δv

(6.74′)

Now, in the framework of the linear single track model, we relax the assump-
tion of rigid steering system. This means making a few changes in the congruence
Eq. (6.148), since δ1 and τ1δv are no longer equal to each other.

6.18.1 Governing Equations

As shown in Fig. 6.45, the steering system now has a finite angular stiffness ks1

with respect to the axis about which the front wheel steers. In a turn, the lateral
force Y1 exerts a vertical moment with respect to the steering axis A because of the
pneumatic trail tc1 and also of the trail ts1 due to the suspension layout (see Fig. 3.1).
The effect of this vertical moment Y1(tc1 + ts1) on a compliant steering system is to
make the front wheel to steer less than τ1δv . More precisely, we have that (Fig. 6.45)

δ1 = τ1δv − Y1(tc1 + ts1)

ks1

(6.194)

The computation of the pneumatic trail tc1 is discussed at p. 312.
Accordingly, the congruence equations (6.148) of the linear single track model

become

α1 = δ1 − v + ra1

u

α2 = χτ1δv − v − ra2

u

(6.195)

with the additional equation (6.194).
On the other hand, the equilibrium equations

m(v̇ + ur) = Y = Y1 + Y2

Jzṙ = N = Y1a1 − Y2a2
(6.147′)

and the constitutive equations

Y1 = C1α1

Y2 = C2α2
(6.149′)

do not change at all.
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6.18.2 Effects of Compliance

Equation (6.194) can be rewritten taking the first equation in (6.149) into account

δ1 = τ1δv − C1(tc1 + ts1)

ks1

α1 = τ1δv − εα1 (6.196)

where ε

ε = C1(tc1 + ts1)

ks1

(6.197)

The first congruence equation becomes

(1 + ε)α1 = τ1δv − v + a1r

u
(6.198)

which leads naturally to define a fictitious slip angle

α̃1 = (1 + ε)α1 (6.199)

and, consequently, a fictitious slip stiffness

C̃1 = C1

1 + ε
(6.200)

Summing up, the linear single track model with compliant steering system is
governed by the set of equations

m(v̇ + ur) = Y = Y1 + Y2

Jzṙ = N = Y1a1 − Y2a2

α̃1 = τ1δv − v + ra1

u
(6.201)

α2 = χτ1δv − v − ra2

u

Y1 = C̃1α̃1

Y2 = C2α2

which is formally identical to the set governing the single track model with rigid
steering system. Therefore, the analysis developed in Sect. 6.17 applies entirely,
provided we take into account that C̃1 → C1 and α̃1 → α1.

Since C̃1 < C1, a compliant steering system makes the vehicle behavior more
understeer.
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6.19 Summary

Road cars are characterized by having an open differential and no significant aero-
dynamic downforces. These two aspects allow for some substantial simplifications
of the vehicle model. With the additional assumption of equal gear ratios of the
steering system for both front wheels, we have been able to formulate the single
track model.

Quite contrary to common belief, we have shown that the axle characteristics can
take into account many vehicle features, like toe in/out, roll steering, camber angles
and camber angle variations.

The steady-state analysis has been carried out first using the classical handling
diagram. Then, the new global approach MAP (Map of Achievable Performance),
based on handling maps on achievable regions has been introduced and discussed in
detail. This new approach shows the overall vehicle behavior at a glance.

Stability and control derivatives have been introduced to study the vehicle tran-
sient behavior. Moreover, the relationship between data collected in steady-state
tests and the vehicle transient behavior has been thoroughly analyzed in a system-
atic framework. To prove the effectiveness of these results, a number of apparently
different vehicles with almost the same handling characteristics has been generated.

6.20 List of Some Relevant Concepts

p. 131 road cars are normally equipped with an open differential;
p. 137 to go from the double track to the single track model we need the following

additional assumption: the left and right gear ratio of the steering system are
almost equal;

p. 139 the main feature of the single track model is that the two wheels of the same
axle undergo the same apparent slip angle;

p. 151 some steady-state quantities are functions of the lateral acceleration only
because of the open differential and no significant downforces;

p. 158 some “fundamental” concepts in vehicle dynamics are indeed very weak if
addressed with open mind;

p. 179 the understeer gradient is not a good parameter and should be dismissed.
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Chapter 7
Handling of Race Cars

Race cars come in a number of shapes, sizes, engine power, type of wings, etc.
However, most of them share the following features relevant to handling:

(1) four wheels (two axles);
(2) two-wheel drive;
(3) limited slip or locked differential;
(4) wings (and hence, significant aerodynamic downforces, along with significant

aerodynamic drag);
(5) often no intervention by electronic active safety systems like ABS or ESP.

The handling analysis of this kind of vehicles is more involved than that of road
cars. The non-open differential makes the vehicle behavior very sensitive also to the
turning radius, while the aerodynamic effects make the vehicle handling behavior
very sensitive to the forward speed.

The analysis developed here is based on the general vehicle model introduced in
Chap. 3.

7.1 Locked and Limited Slip Differentials

The mechanics of any differential mechanism has been discussed in Sect. 3.11.4,
where all relevant equations have been obtained. Here, we briefly summarized the
topic.

A locked differential is actually not a differential. Indeed, a differential mech-
anism must convey power from a single shaft to two shafts while permitting dif-
ferent rotation speeds. A locked differential no longer has this degree of freedom
and the two wheels must rotate at the same angular speed, regardless of the torques
they receive. However, any locked differential can be unlocked, as its name im-
plies.

Race cars are usually equipped with a limited slip differential. It is a differential
with a torque bias, which can become totally locked in some cases. Actually, a better
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204 7 Handling of Race Cars

name would be just “differential”, leaving the “open” attribute to those very special,
albeit extremely common in road cars, differentials without significant internal fric-
tion.

Essentially, a differential must have the capability of splitting power according to
the three fundamental laws (3.127). Let us consider a vehicle equipped with a limited
slip differential at the driven axle, that is a differential whose internal efficiency
ηh � 1, and hence with a TBR � 1. For definiteness, let us suppose to deal with a
rear-wheel-drive vehicle.

As discussed in Sect. 3.11.4, a limited slip differential is built to have some sort
of friction inside the housing, which makes the torques applied to the left and right
shaft not equal to each other. It has been shown in (3.132) that during power on, it
is always the slower wheel that receives the higher torque.

In a curve, counterintuitive as it may appear, the inside wheel has not neces-
sarily an angular speed lower than the outside wheel. Just consider a race car ac-
celerating while exiting a curve: since in most cases its inside wheel is barely
touching the ground, its angular speed is certainly higher than that of the outer
wheel (Fig. 3.22(b)). This phenomenon is one of the main reasons that renders
a limited slip differential almost mandatory in a race car. Otherwise, that is with
an open differential, the car would not accelerate much, as the maximum longi-
tudinal force would be limited by the inner wheel (the one barely touching the
ground).

On the other hand, if a vehicle is turning at low lateral acceleration the inside
wheel will be turning slower than the outside wheel, and hence it will receive more
torque (Fig. 3.22(a)).

In any case, as stated in (3.132), we have ηh � 1, and hence the two longitudinal
forces Fx21 and Fx22 exerted by the rear tires on the vehicle are not equal to each
other. Therefore we have a yawing moment coming from the longitudinal forces
acting on the vehicle

ΔX2t2 �= 0 (7.1)

When compared with (6.1), that is with the case of open differential, it looks like a
small difference, but it is not. The locked or limited slip differential does affect quite
a bit the vehicle handling behavior, and, accordingly, the vehicle model becomes
much more involved when compared with the model of a vehicle equipped with an
open differential.

Another consequence is that we have significant longitudinal forces at the rear
axles and, therefore, longitudinal slips, even when turning at constant forward
speed

Fx2j
�= 0

σx2j
�= 0

(7.2)
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Fig. 7.1 Road-tire friction
forces for a race car with
limited slip differential

In other words, the longitudinal slips σx2j
cannot be neglected, and, hence, the tire

constitutive equations must include them for the two wheels of the driven axle.

7.2 Fundamental Equations of Race Car Handling

Owing to the presence of a limited slip differential (ΔX2 �= 0) and of relevant aero-
dynamic loads (high downforce and hence high drag: X2 �= 0), the tires of the driven
axle undergo significant longitudinal slips under almost all operating conditions.
Therefore, it does not make much sense to restrict the analysis to steady state since
the very beginning. However, to highlight the role of the limited slip differential,
we do not consider the vehicle while braking, but only during power-on/power-off
conditions. Therefore, we have at the front axle

Fx11 = Fx12 = 0 (7.3)

and hence σx11 = σx12 = 0.
For a rear-wheel-drive race car, the equilibrium equations (3.64) become

(Fig. 7.1)

max = m(u̇ − vr) = X = X1 + X2 − Xa

may = m(v̇ + ur) = Y = Y1 + Y2

Jzṙ = N = Y1a1 − Y2a2 + ΔX1t1 + ΔX2t2

(7.4)
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where, as discussed in Sect. 3.5.3,

X1 = −Fy11 sin(δ11) − Fy12 sin(δ12)

Y1 = Fy11 cos(δ11) + Fy12 cos(δ12)

ΔX1 = [Fy12 sin(δ12) − Fy11 sin(δ11)
]
/2 � 0

X2 = Fx21 + Fx22

Y2 = Fy21 + Fy22

ΔX2 = (Fx22 − Fx21)/2

(7.5)

Depending on the type of differential mechanism, one of the following equations
must supplement the equilibrium equations

ω22 = ω21 (locked) (7.6)

Fx22 = ((ης
h

)ϕ)
Fx21 (limited slip) (7.7)

Fx22 = Fx21 (open) (7.8)

where, as already done in (3.136), ς = 1 during power-on and ς = −1 during
power-off, and ϕ = sign(ω22 − ω21).

The extra yawing moment NX = Nd , due to the limited slip differential

Nd = ΔX2t2 (7.9)

in the yaw equation, strongly affects the lateral forces, both quantitatively and qual-
itatively (cf. 6.6)

Y1 = 1

l

(
ma2ay + (Jzṙ − Nd)

)� 1

l
(ma2ay − Nd)

Y2 = 1

l

(
ma1ay − (Jzṙ − Nd)

)� 1

l
(ma1ay + Nd)

(7.10)

A result already obtained in (3.72) and (3.116). The key point is that Y1 and Y2 are
no longer functions of ay only, as it was instead in (6.6). They also depend on the
yawing moment Nd generated by the limited slip (or locked) differential.

The lateral load transfers ΔZi were obtained in (3.114) and (3.115) as linear
functions of Y1 and Y2. Combining these equations with (7.10) we get

ΔZ1 = mayη1 + Ndν1

ΔZ2 = mayη2 + Ndν2
(7.11)

The expressions (3.79) for the vertical loads on each tire must be taken in full,
except for the Jzxr

2 term, which is almost certainly negligible. In compact form,
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(3.79) can be recast as (cf. (6.11))

Z11 = m

2l
(ga2 − hax) + D1u

2 − (mayη1 + Ndν1) = Z11
(
ax,u

2, ay,Nd

)

Z12 = m

2l
(ga2 − hax) + D1u

2 + (mayη1 + Ndν1) = Z12
(
ax,u

2, ay,Nd

)

Z21 = m

2l
(ga1 + hax) + D2u

2 − (mayη2 + Ndν2) = Z21
(
ax,u

2, ay,Nd

)

Z22 = m

2l
(ga1 + hax) + D2u

2 + (mayη2 + Ndν2) = Z22
(
ax,u

2, ay,Nd

)

(7.12)

where, according to (3.57)

D1 = −1

2
ρaSaCz1 and D2 = −1

2
ρaSaCz2 (7.13)

A race car with wings has Czi < 0, and hence Di > 0. The comparison of (7.12) with
(6.11) shows the effect of aerodynamic devices and of the limited slip differential.

Similarly, we have φs
i = φs

i (ay,Nd) and Δγi = Δγi(ay,Nd). They generalize
(6.8) and (6.17).

Since, in general, the rear tires apply both longitudinal and lateral forces to the
vehicle, the full form (3.124) of the tire slips must be taken

σx2j
= σx2j

(
v, r, u, δv,φ

s
2(ay,Nd),ω2j

)
σy2j

= σy2j

(
v, r, u, δv,φ

s
2(ay,Nd),ω2j

) (3.124′)

where ω21 and ω22 are the angular speed of the two rear wheels. They are not under
longitudinal pure rolling condition.

At the front axle we have σx11 = σx12 = 0 (longitudinal pure rolling) and, accord-
ingly, we can rely on the simplified expressions

σy1j
= σy1j

(v, r, u, δv) = σy1j
(β,ρ, ay, δv) (7.14)

as in (6.14).
Therefore, according to the constitutive equations (2.72), the load transfers (7.12)

and the lateral slips (7.14), the front tire forces can be expressed as

Fx11 = 0

Fy11 = Fy11(Z11, γ11, σy11) = Fy11(v, r, u, δv,Nd)

Fx12 = 0

Fy12 = Fy12(Z12, γ12, σy12) = Fy12(v, r, u, δv,Nd)

(7.15)
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The rear tires are under combined slip conditions and, therefore, also the angular
speed of rotation of each wheel has to be taken into account

Fx21 = Fx21(Z21, γ21, σx21, σy21) = Fx21(v, r, u, δv,Nd,ω21)

Fy21 = Fy21(Z21, γ21, σx21, σy21) = Fy21(v, r, u, δv,Nd,ω21)

Fx22 = Fx22(Z22, γ22, σx22, σy22) = Fx22(v, r, u, δv,Nd,ω22)

Fy22 = Fy22(Z22, γ22, σx22, σy22) = Fy22(v, r, u, δv,Nd,ω22)

(7.16)

All these tire forces have to be combined according to (7.5), because this is the
way they are felt by the vehicle

−Fy11 sin(δ11) − Fy12 sin(δ12) = X1(v, r, u, δv,Nd)

Fy11 cos(δ11) + Fy12 cos(δ12) = Y1(v, r, u, δv,Nd)[
Fy12 sin(δ12) − Fy11 sin(δ11)

]
/2 = ΔX1(v, r, u, δv,Nd)t1

Fx21 + Fx22 = X2(v, r, u, δv,Nd,ω21,ω22)

Fy21 + Fy22 = Y2(v, r, u, δv,Nd,ω21,ω22)

(Fx22 − Fx21)t2/2 = ΔX2(v, r, u, δv,Nd,ω21,ω22)t2

(7.17)

7.3 Double Track Race Car Model

After a bit of work, we are now ready to set up the fundamental governing equations
for the handling of a car equipped with limited slip/locked differential and with
aerodynamic wings. Just insert (7.17) into (7.4) and add one equation of (7.6), beside
(3.129)

m(u̇ − vr) = X1 + X2 − Xa = X(v, r, u, δv,Nd,ω21,ω22)

m(v̇ + ur) = Y1 + Y2 = Y(v, r, u, δv,Nd,ω21,ω22)

Jzṙ = Y1a1 − Y2a2 + Nd = N(v, r, u, δv,Nd,ω21,ω22)

Nd = (Fx22 − Fx21)/2 = ΔX2(v, r, u, δv,Nd,ω21,ω22)

Fx22 = ((ης
h

)ϕ)
Fx21 or

ω21 = ω22, ω21 + ω22 = 2ωh

(7.18)

Perhaps, the most natural way to set up the problem is to assign the angular speed ωh

of the housing of the differential and the angular position δv of the steering wheel,
and then solve a system of six differential-algebraic equations in the six unknown
functions (v, r, u,Nd,ω21,ω22). This is more realistic than imposing directly the
forward speed u.
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7.4 Tools for Handling Analysis 209

The comparison of (7.18) with (6.21), that is with the governing equation for
an ordinary road vehicle, clearly shows the increased complexity of the model. But
this is no surprise: a race car exhibits indeed a much richer handling behavior. Fortu-
nately, the Map of Achievable Performance (MAP), that is the new global approach
first presented in Sect. 6.10, provides a useful tool for understanding the handling
behavior of a race car. This aspect will be addressed shortly and thoroughly.

However, the question that naturally arises at this point is whether we can go
“single track” or not, as has been done for road cars in Sect. 6.4. To answer this
question we should recall that by single track [1–3, 7, 11] we meant a vehicle model
having two axle characteristics (6.33), that is two constitutive equations, one per
each axle, involving only a single kinematic variable each (namely, the axle apparent
slip angle). This is no longer possible, nor even for the front axle, since there is a
strong interaction between lateral and longitudinal tire forces. More precisely, the
analysis developed in Sect. 6.7.1 about the role of lateral acceleration is no longer
applicable.

Therefore, in this case we cannot end up with a single track model. However,
we will find a way to achieve a fairly simple description of the vehicle handling
behavior.

7.4 Tools for Handling Analysis

It is customary in vehicle dynamics to start with the steady-state analysis, that is
with all time-derivatives in the governing equations (7.18) set equal to zero. That
means having the vehicle go round along a circle of constant radius at constant
forward speed. In practice, it is much more convenient to do a slowly increasing
steer maneuver, also called constant speed, variable steer test. The vehicle is almost
in steady-state conditions, but the test procedure is much faster.

Pretty much like in Sect. 6.7.2, everything is based on the steady-state maps

ρ = ρ(ãy, δv) and β = β(ãy, δv) (7.19)

or, equivalently1

ρ = ρ(u, δv) and β = β(u, δv) (7.20)

which, beside being important by themselves, make also possible to unambiguously
define the gradients

gradρp =
(

∂ρp

∂ãy

,
∂ρp

∂δv

)
= (βy,βδ) = −(Kρy ,Kρδ )

gradβp =
(

∂βp

∂ãy

,
∂βp

∂δv

)
= (ρy, ρδ) = −(Kβy ,Kβδ )

(6.66′)

1We apologize for abusing notation, but too many symbols would be confusing.
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210 7 Handling of Race Cars

These quantities are well defined in any vehicle, including race cars.
The new global approach to handling called MAP, first developed in Sect. 6.10,

turns out to be very informative for race cars as well, as will be shown shortly. The
analysis will be particularly interesting when aerodynamics is taken into account.

In Eqs. (7.19) and (7.20) we have omitted, with respect to (6.65) and (6.73), the
r.h.s. terms, that is those involving the apparent slip angles α1 and α2 (6.24) and
the steering angles. This has been done for greater generality, because they are not
well defined, unless we assume τ11 = τ12,2 as in (6.22). But the key point is that
α1 and α2, even if well defined, no longer are functions of the lateral acceleration
ãy only. This aspect has a lot of important consequences. For instance, the classi-
cal handling diagram [8–10] does not exist any more. It has to be replaced by the
handling surface, first introduced in [4–6], as will be shown in the next section.

7.5 The Handling Diagram Becomes the Handling Surface

Although, in our opinion, the handling surface has been superseded by the MAP
approach, it still deserves to be explained.

The well known handling diagram is made up of the handling curve and a straight
line. As already stated in Sect. 6.8, this is quite a fortunate coincidence. In general,
the handling curve must be replaced by the handling surface. Indeed, any steady-
state configuration depends on two parameters (as a minimum), like, e.g., the for-
ward speed u and the steering angle δv . In vehicles with open differential and no
wings, it happens that some quantities depend only on one parameter, namely the
lateral acceleration ãy . More precisely, the handling surface becomes a cylinder,
whose projection is the handling curve, as shown in [5]. But, let us elaborate this
concept in detail.

7.5.1 Handling with Locked Differential (no Wings)

Before dealing with the handling of race cars with significant aerodynamic down-
forces, we address the effect of the locked differential alone, with respect to the
open differential. To do this, we consider road cars, which have very little, if any,
aerodynamic vertical forces (no wings and not too high speed).

7.5.1.1 Steady State

According to the classical theory, we perform a number of (almost) steady-state
tests, like slowly increasing steer manoeuvres, first for a vehicle with open differen-
tial, and then for the same vehicle but with a locked differential.

2However, many race cars do have τ11 = τ12, often called parallel steering.
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7.5 The Handling Diagram Becomes the Handling Surface 211

Fig. 7.2 Vehicle with open
differential: handling curve(s)
obtained in constant speed,
variable steer tests

In all cases we monitor the forward speed u, the lateral speed v (or, equivalently,
the vehicle slip angle β = v/u), the yaw rate r , the steering wheel angle δv . Al-
though not strictly necessary, it is very convenient to monitor directly also the lateral
acceleration ãy = ur . We also know the gear ratio τij of the whole steering system
for each wheel. Assuming, as in (6.22), (τ11 = τ12) = τ1 for the front wheels, and
(τ21 = τ22) = τ2 for the rear wheels (although usually τ2 = 0), we can define the
front steer angle δ1 = τ1δv and the rear steer angle δ2 = τ2δv . The last useful piece
of information is the wheelbase l = a1 + a2.3

The classical handling curve is the plot of (δ1 − δ2) − l/R vs ãy , as discussed in
Sect. 6.8. An understeer vehicle with open differential has a handling diagram like
in Fig. 7.2. Basically, we get about the same curve regardless of the combination
of forward speed and steer angle: only ãy matters. On the other hand, performing
constant speed, variable steer tests on the same vehicle, but with locked differential
yields a different handling curve for each forward speed, as shown in Fig. 7.3.

The general framework to understand what is going on in all cases is the handling
surface, that is the plot of

(δ1 − δ2) − l

R
= δ − l

R
= f

(
ãy,

l

R

)
(7.21)

which is no longer a function of ãy only, but needs another variable, like, e.g., l/R.
Indeed, since there are two input quantities, like the forward speed and the steer
angle, it is normal to have to deal with two variables at steady-state. The handling
curves are just the projections of some sections of the handling surface onto the
plane (ãy, δ − l/R). It happens that the handling surface is almost a cylinder for

3Actually, vehicle dynamics had better avoid using the wheelbase, as discussed in Sect. 6.9.
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212 7 Handling of Race Cars

Fig. 7.3 Vehicle with locked
differential: handling curves
obtained in constant speed,
variable steer tests

the open differential case, as shown in Fig. 7.4. Therefore, it always collapses into
almost a single curve when projected. But more general vehicles (or better, less
peculiar vehicles), that is all vehicles with at least one of the following features:

• locked differential;
• limited slip differential;
• aerodynamic wings;
• more than two axles;
• large steer angles;

they all exhibit a non-cylindrical handling surface, like the one shown in Fig. 7.5.

Fig. 7.4 Almost cylindrical handling surface for a vehicle with open differential
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Fig. 7.5 Non-cylindrical handling surface for a vehicle with locked differential

Fig. 7.6 Vehicle with locked differential: comparison between handling curves obtained in con-
stant speed, variable steer tests (left) and constant steer, variable speed tests (right)

Therefore, drawing handling curves can be very confusing for a vehicle with
locked differential, as the kind of test matters a lot. For instance, constant steer,
variable speed tests yield curves that are totally different with respect to the constant
speed, variable steer tests, as shown in Fig. 7.6. They are, however, just different
sections of the very same handling surface. Again, if the differential is open, the
handling surface is cylindrical, and all tests, that is all sections, project onto about
the same curve, as shown in Fig. 7.7, regardless of the kind of maneuver.

To elaborate this idea further, we present Figs. 7.8 and 7.9 taken from [5]. The
first figure shows sections of the handling surface for several values of the con-
stant speed u. In the plane (l/R, ãy) = (lr/u,ur), they appear as straight lines from
the origin. The projections of each of these sections in the plane (ãy, δ − l/R) are
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214 7 Handling of Race Cars

Fig. 7.7 Vehicle with open differential: comparison between handling curves obtained in constant
speed, variable steer tests (left) and constant steer, variable speed tests (right)

shown in the left part. Similarly, the second figure shows sections of the handling
surface for several values of the constant radius R. In the plane (l/R, ãy), they ap-
pear as vertical straight lines. The projections of each of these sections in the plane
(ãy, δ − l/R) are shown in the left part.

At low speed, like u = 9 m/s, and large steer angle δ1 = 18◦, an ordinary road car
receives from the road, more or less, the forces depicted in Fig. 7.10 when equipped
with an open differential, and the forces shown in Fig. 7.11 when equipped with a
locked differential. Also shown, in Fig. 7.12, is the case of a limited slip differential
with internal efficiency ηh = 0.33. Similar figures can be found in Sect. 3.11.4.
The three cases are deeply different. The yawing moment of the two longitudinal
forces is obviously zero with open differential. With locked differential, at such
low speed and high steer angle, the external wheel provides a braking force, which
must be counteracted by the inner wheel: the yawing moment is so high to affect
significantly both front and rear lateral forces. The limited slip case is something in
between, with a small yawing moment coming from the longitudinal forces.

At much higher speed, say u = 54 m/s, and low steer angle, say δ1 = 3◦, the
moment due to the locked differential changes sign, as shown in Fig. 7.13. This
is a typical and important phenomenon, due to the lateral load transfer. The inner
wheel barely touches the ground and cannot provide much longitudinal force, thus
limiting, with an open differential, the external force as well.

Superimposing the handling curves obtained in constant speed, variable steer
tests for both open and locked differential, as shown in Fig. 7.14, we can appreciate
the understeer effect at low lateral acceleration and the oversteer effect at high lateral
acceleration. This is due to the yawing moment Nd , which has the typical behavior
shown in Figs. 7.15 and 7.16 in case of locked differential. Of course, Nd is equal
to zero when the differential is open.
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7.5 The Handling Diagram Becomes the Handling Surface 215

Fig. 7.8 Handling curves at constant speed (left) as sections of the handling surface (right) [5]

Fig. 7.9 Handling curves at constant turning radius (left) as sections of the handling surface
(right) [5]

In case of limited slip differential with ηh = 0.33, the yawing moment Nd due to
the longitudinal forces is something like in Figs. 7.17 and 7.18. It is worth noting
the “knee” in some curves due to the internal wheel switching from slow wheel to
fast wheel.
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Fig. 7.10 Vehicle with open
differential: forces received
from the road at u = 9 m/s
and δ1 = 18◦

Fig. 7.11 Vehicle with
locked differential: forces
received from the road at
u = 9 m/s and δ1 = 18◦

Fig. 7.12 Vehicle with
limited slip differential
(ηh = 0.33): forces received
from the road at u = 9 m/s
and δ1 = 18◦

Fig. 7.13 Vehicle with
locked differential: forces
received from the road at
u = 54 m/s and δ1 = 3◦

Fig. 7.14 Handling curves
obtained in constant speed,
variable steer tests:
comparison between locked
differential (thin lines) and
open differential (thick lines)
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Fig. 7.15 Locked differential: yawing moment vs lateral acceleration for several speeds

Fig. 7.16 Locked differential: yawing moment vs steer angle for several speeds

7.5.1.2 Power-off and Power-on

When braking using the engine, that is in power-off conditions, while negotiating
a curve, the longitudinal forces are like in Fig. 7.19 in case of locked or limited
slip differential. The corresponding yawing moments Nd are plotted in Figs. 7.20
and 7.21 vs the steer angle δ = δ1 − δ2, for several values of the forward speed.

While during power-off it is always the external wheel that receives the high-
est (braking) longitudinal force, as shown in Fig. 7.19, under power-on conditions,
while negotiating a curve with a vehicle with locked differential, there can be two
possible cases, depending on the value of the lateral acceleration ay (Fig. 7.22). This
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Fig. 7.17 Limited slip differential (ηh = 0.33): yawing moment vs lateral acceleration for several
speeds

Fig. 7.18 Limited slip differential (ηh = 0.33): yawing moment vs steer angle for several speeds

Fig. 7.19 Vehicle with
locked or limited slip
differential: forces received
from the road during
power-off
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Fig. 7.20 Locked differential: yawing moment vs steer angle for several speeds during power-off

Fig. 7.21 Limited slip differential (ηh = 0.33): yawing moment vs steer angle for several speeds
during power-off

Fig. 7.22 Vehicle with locked or limited slip differential: forces received from the road during
power-on

www.cargeek.ir

www.cargeek.ir

http://www.cargeek.ir/
http://www.cargeek.ir/


220 7 Handling of Race Cars

Fig. 7.23 Locked differential: yawing moment vs steer angle for several speeds during power-on

Fig. 7.24 Limited slip differential (ηh = 0.33): yawing moment vs lateral acceleration for several
speeds during power-on

is better understood looking at the plot of Nd as a function of the lateral accelera-
tion ay , as shown in Fig. 7.23 for locked differential, and in Fig. 7.24 for limited
slip differential, in both cases for several values of the forward speed u (ranging
from 9 m/s up to 54 m/s): the moment can either be negative or positive, whereas in
Figs. 7.20 and 7.21 it is always negative.

Although they are the main topic of the next section, we show the MAPs for the
power-off and power-on cases of a road car. This new global approach has been
already introduced and described in detail in Sect. 6.10 for steady-state handling
analysis of road cars. The maps ρ–δ for locked differential are shown in Fig. 7.25,
while the same maps for open differential are given in Fig. 7.26. The oversteer effect
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Fig. 7.25 Lines at constant speed u in the handling map ρ–δ during power-off (left) and power-on
(right) for a road vehicle with locked differential

Fig. 7.26 Line at constant speed u in the handling map ρ–δ during power-off (left) and power-on
(right) for a road vehicle with open differential

of power-on for a rear-wheel-drive car is evident in both cases. However, the locked
differential makes this phenomenon stronger.

The maps β–ρ for power-off and power-on for a vehicle equipped with a locked
differential are shown in Fig. 7.27. Again, the lines at constant steer angle clearly
show, and do it in a quantitative way, the oversteer effect of power-on. For compar-
ison, the same maps for a vehicle with open differential are given in Fig. 7.28.

7.6 Handling of Formula Cars

It is in the handling of Formula Cars that aerodynamics comes really into play
(Fig. 7.29). Thanks to well designed wings, very high downforces are generated
at high speeds, although at the price of high drag as well. A mathematical model
that takes aerodynamics into account has been developed in Sect. 7.2. Here we dis-
cuss some of the main phenomena that make the handling of this kind of cars so
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Fig. 7.27 Handling map β–ρ during power-off (left) and power-on (right) for a road vehicle with
locked differential (constant u: solid thick lines, constant δ: thin solid lines, constant ay : dashed
lines)

Fig. 7.28 Handling map β–ρ during power-off (left) and power-on (right) for a road vehicle with
open differential (constant u: solid thick lines, constant δ: thin solid lines, constant ay : dashed
lines)

Fig. 7.29 Vehicle model for a Formula car
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Fig. 7.30 Formula car with
open differential: different
handling curves obtained in
constant speed, variable steer
tests

peculiar. We start with the handling surface to move on to the maps of achievable
performance (MAP’s), first at steady state, and then during power-off and power-on.

Although these cars have a limited slip differential, at the center of a bend, that
is when the vehicle is more or less close to steady state, the differential is basically
open. Therefore, the steady-state analysis is more realistic if done with open differ-
ential, leaving the locked one for power-off and power-on. In all cases we consider
speeds in the range 20–80 m/s.

7.6.1 Handling Surface

The handling surface has been introduced and discussed in Sect. 7.5. It is the plot
of δ − l/r as a function of the lateral acceleration ãy and the ratio l/R = lρ. In case
of significant aerodynamic effects, it is not cylindrical. This geometric feature is the
counterpart of a very practical and obvious phenomenon: the speed matters a lot
when a car is making a turn. The faster the car, the higher the lateral acceleration
that can be achieved, assuming the same physical grip between the tires and the
road. Therefore, once again, if we try to get the classical handling curve we will end
up with a number of different handling curves, one for each testing condition. Tests
at constant speed and variable steer will yield a different curve for each speed. Tests
at constant steer and variable speed will produce a different set of curves, and so on.

These aspects are better understood looking at Fig. 7.30, which shows the han-
dling curves for a Formula car with open differential as obtained in constant speed,
slowly variable steer tests. It is evident that the higher the speed, the higher the
lateral acceleration.
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Fig. 7.31 Formula car with
locked differential: different
handling curves obtained in
constant speed, variable steer
tests

Locking completely the differential affects these handling curves, but not much,
as shown in Fig. 7.31 (the aerodynamics is more influential). The main difference
is, perhaps, that all curves in case of open differential share the same slope near the
origin of the reference system, whereas in case of locked differential each one has a
different slope, even when ãy � 0.

As expected, performing constant steer, slowly variable speed tests yield differ-
ent handling curves, as shown in Fig. 7.32. However, all these curves are just the
projections of some sections of the handling surface, as shown in Fig. 7.33.

Fig. 7.32 Formula car with open differential: comparison between handling curves obtained in
constant speed, variable steer tests (left) and constant steer, variable speed tests (right)
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Fig. 7.33 Non-cylindrical handling surface for a Formula car with open differential

7.6.2 Map of Achievable Performance (MAP)

The global approach MAP has been introduced in Sect. 6.10. The emphasis there
was on road cars, that is cars without any significant aerodynamic downforces and
with open differential. However, this new approach is completely general, and its
application to race cars is straightforward.

The basic idea, as discussed at p. 160, is to employ the maps

ρ = ρ(u, δ) = δ

l
− α1(u, δ) − α2(u, δ)

l

β = β(u, δ) =
(

(1 + χ̂ )a2 + χ̂a1

l

)
δ − α1(u, δ)a2 + α2(u, δ)a1

l

(6.76′)

as functions of two variables to monitor the vehicle at steady state. This is a more
general point of view than the handling surface (not to mention the handling dia-
gram).

The maps in this section are typical for a Formula 1 car, year 2013. As usual, all
quantities are in SI units, except angles that are in degrees.

7.6.2.1 ρ–δ MAP (Curvature-Steer Angle)

The first map to be considered is the curvature ρ = r/u vs the wheel steer angle δ

(although we could employ the steering wheel angle δv as well). In Fig. 7.34 we can
see the lines at constant speed u, ranging from 20 to 80 m/s, and also the lines at
constant lateral acceleration ãy , in case of open differential. In Fig. 7.35, we have
the same picture, but for locked differential.
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Fig. 7.34 ρ–δ MAP of a
Formula 1 car with open
differential. Curves at
constant speed u and curves
at constant lateral
acceleration ãy

Fig. 7.35 ρ–δ MAP of a
Formula 1 car with locked
differential. Curves at
constant speed u and curves
at constant lateral
acceleration ãy

Lines at constant speed for open and locked differential are compared in
Fig. 7.36. As expected, the locked differential makes the car turn on bigger radiuses
(hence smaller values of ρ).

The strong influence of aerodynamics on the handling of the vehicle is high-
lighted by the pattern of the lines at constant lateral acceleration. Going back to
Fig. 6.20, that is to the map for an ordinary road vehicle, we see that each line at
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Fig. 7.36 Comparison
between Figs. 7.34 and 7.35
for lines at constant speed

Fig. 7.37 Close-up of
Fig. 7.34

constant ãy intersects all lines at constant u. That means that the level of lateral ac-
celeration that can be achieved is not affected by the forward speed (no wings). On
the other hand, in Figs. 7.34 and 7.35, only lines up to about 16 m/s2 intersect all
constant speed lines. The lines for ãy > 16 m/s2 only intersect lines for sufficiently
high speed. Indeed, 1.6 is about the grip coefficient between the tire and the road,
that is the “physical grip”. The grip that does not need any aerodynamic contribu-
tion. Higher values of apparent grip do indeed need aerodynamic downforce and
hence they can be achieved only for sufficiently high values of the forward speed u.
The map shows this fact, and does so in a clear and global way. A close-up is shown
in Fig. 7.37 for better clarity.
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Fig. 7.38 β–ρ MAP for a
Formula 1 car with open
differential. Curves at
constant speed u and curves
at constant lateral
acceleration ãy

7.6.2.2 β–ρ MAP (Vehicle Slip Angle-Curvature)

Also interesting is the handling β–ρ MAP, that is vehicle slip angle vs curvature.
The lines at constant speed u and the lines at constant lateral acceleration ãy are
shown in Fig. 7.38. Again, only lines for ãy < 16 m/s2 intersect all lines at constant
speed, thus indicating that 1.6 is indeed the physical grip (of course we could be
more precise by drawing more lines). Therefore, we have a tool to obtain a good
approximation of the physical grip.

Also interesting is the overall picture, which shows how the control parameter u

and δ are related to curvature and vehicle slip angle. For instance, if u > 30 m/s, we
have basically β ≤ 0 (in a left turn) at any speed.

Lines at constant steer angle are shown in Fig. 7.39. Looking at the slope of these
curves, it immediately arises that the vehicle is more understeer at low speeds than
at high speeds.

To help the reader catch other features in this map, all lines are shown in
Fig. 7.40.

7.6.2.3 Set-up Identification

Another interesting application of the MAP’s is to compare set-ups. This is done in
Figs. 7.41 and 7.42 for two set-ups which have different aerodynamic balances. The
second set-up (dashed lines) has higher aerodynamic load on the front axle and less
aerodynamic load on the rear axle.

Very interesting is to observe that the lines at constant ãy that are more affected
are precisely those that need aerodynamic downforces to be achieved (Fig. 7.41).
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Fig. 7.39 β–ρ MAP or a
Formula 1 car with open
differential. Curves at
constant speed u and curves
at constant steer angle δ

Fig. 7.40 β–ρ MAP for a
Formula 1 car with open
differential. Superimposition
of Figs. 7.38 and 7.39

From Fig. 7.42 we see that the new aerodynamic balance does not affect the lines
at constant δ in a uniform way. This may help understand which set-up is faster for
a given circuit.
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Fig. 7.41 Comparison of
curve at constant lateral
acceleration for two set-ups
with different aerodynamic
balance

Fig. 7.42 Comparison of
curve at constant steer angle
for two set-ups with different
aerodynamic balance

7.6.2.4 Power-off and Power-on

So far we have considered steady-state conditions. However, a Formula car is almost
always under transient conditions, with the driver acting on the gas and/or brake
pedals. The MAP’s can be useful to monitor what is going on also during these
more general working conditions. The trick is to do, e.g., constant speed, variable
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Fig. 7.43 Lines at constant
speed in the ρ–δ MAP for a
Formula 1 car during
power-off (dashed lines) and
power-on (solid lines)

steer simulations as if the car were constantly going uphill or downhill. This way, we
have, strictly speaking, steady-state conditions, but the loads on the tires are pretty
much like if the car were accelerating or slowing down with the engine (no braking),
that is during power-on and power-off conditions.

During power-off and power-on, the differential of a Formula 1 car is locked.
Therefore, all figures in this section are for locked differential.

A few figures are provided to show how the MAP’s can be used to have a global
view of the vehicle behavior even under pseudo-transient conditions. Figure 7.43
shows the ρ–δ map with lines at constant speed during power-off (dashed lines) and
power-on (solid lines). Speeds below 30 m/s have been omitted. The two cases are
for a longitudinal acceleration of ±0.5 m/s2. In Fig. 7.44 there is the comparison of
power-off (dashed lines) and power-on (solid lines) in the plane β–ρ. At high steer
angles and relatively low speeds there are, as expected, very big differences.

During power-on, the locked differential generates a yawing moment that can
have either the same sign as the yaw rate (Fig. 7.45) or opposite sign (Fig. 7.46),
depending on the operating conditions of the vehicle.

7.7 Summary

Limited slip differential and wings are typical of race cars. Both greatly impact on
the vehicle handling (otherwise they would not be used). Therefore, the first part of
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Fig. 7.44 Lines at constant u

and constant δ in the β–ρ

MAP for a Formula 1 car
during power-off (dashed
lines) and power-on (solid
lines)

Fig. 7.45 Power-on with
locked differential: forces
received from the road at
u = 40 m/s and δ = 7◦

Fig. 7.46 Power-on with
locked differential: forces
received from the road at
u = 40 m/s and δ = 5◦

this chapter has been devoted to the formulation of a suitable vehicle model, which,
in this case, cannot be single track. As a matter of fact, there is a strong interaction
between lateral and longitudinal forces.
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The concept of handling diagram becomes inadequate and must be replaced by
the handling surface. This fairly new tool has been introduced in the framework of
handling of road cars with locked or limited slip differential.

The handling of Formula cars has been first addressed by means of the handling
surface. However, a more powerful description has been provided by means of the
Maps of Achievable Performance—MAP. With this new approach it is possible to
better understand the effects of different vehicle set-ups at steady state and also in
power-on/off conditions.

7.8 List of Some Relevant Concepts

p. 203 non-open differential makes vehicle behavior very sensitive also to the turn-
ing radius. Aerodynamic effects make the vehicle handling behavior very
sensitive to the forward speed;

p. 210 the handling curve must be replaced by the handling surface;
p. 213 the curves on the handling diagram are the projections of sections of the

handling surface;
p. 217 the yawing moment due to the limited slip differential can be either positive

or negative;
p. 226 by means of the Map of Achievable Performance (MAP) it is possible to

single out the physical grip.
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Chapter 8
Ride Comfort and Road Holding

Real roads are far from flat. Even freshly paved highways have small imperfections
that interact with the vehicle dynamics by exciting vehicle vertical vibrations.

The capability to smooth down road imperfections affects both the comfort and
the road holding of the vehicle. Improving comfort means, basically, limiting the
vertical acceleration fluctuations of the vehicle body and hence of passengers.
Improving road holding means, among other things, limiting the fluctuations of
the vertical force that each tire exchanges with the road.1 The main parameters
that affect both comfort and road holding are the suspension stiffness and damp-
ing.

The study of the vibrational behavior of a vehicle going straight at constant speed
on a bumpy road is called ride [1–4, 7, 8]. More precisely, ride deals with frequen-
cies in the range 0.25–25 Hz for road cars, a bit higher for race cars. Tires can,
among other things, absorb small road irregularities at high frequency because of
their vertical elasticity and low mass. However, for frequencies below 3 Hz the tires
have little influence and can be considered as rigid. Therefore, the burden to absorb
bigger bumps goes to the vehicle suspensions.

While when studying the handling of a vehicle we were also interested in the
suspension geometry, we focus here on springs and shock absorbers. We look for
criteria for selecting the right stiffness and the right amount of damping for each
suspension.

Actually, this is only half the truth. Real suspensions have nonlinear springs and
non linear shock absorbers, whose features cannot be reduced to a single number
like in the linear case. However, suspensions with linear behavior are a good intro-
duction to the study of ride and road holding.

Although standard suspension systems are based on two components—springs
and shock absorbers (dampers)—there is a third component that can turn out to be
useful in some cases. It is the so-called inerter. The inerter is a device that provides a
force proportional to the relative acceleration between its attachment points, much

1Of course, we mean fluctuations due to road imperfections, not to load transfers.

M. Guiggiani, The Science of Vehicle Dynamics, DOI 10.1007/978-94-017-8533-4_8,
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236 8 Ride Comfort and Road Holding

Fig. 8.1 Schematics for
spring, shock absorber and
inerter

like a shock absorber provides a force proportional to the relative velocity and a
spring a force proportional to the relative displacement (Fig. 8.1)

Fk = k(z − y)

Fc = c(ż − ẏ)

Fb = b(z̈ − ÿ)

(8.1)

It was missing indeed, till quite recently [8]. A typical inerter incorporates a
flywheel which rotates in proportion to the relative displacement between its two
ends. So far, it has been employed in some Formula cars. We will show how it can
improve, in some cases, the car road holding.

8.1 Vehicle Models for Ride and Road Holding

We are mostly interested in the vehicle vertical motion. To keep our ride analysis
quite simple, we assume that the vehicle goes straight and at constant speed. There-
fore, there are no handling and/or performance implications here. The ride analysis
comes into play because of the uneven road. Actually, we ask for a very peculiar
road, albeit uneven. It must have exactly the same profile for both wheels of the
same axle, thus not inducing roll motion at all. That means that we can rely on a
two-dimensional model.

The vehicle models set up for handling and performance are not suitable for ride.
We need to develop a tailored model like, e.g., the four-degree-of-freedom model
shown in Fig. 8.2. In this model there are three rigid bodies:

• the sprung mass ms (with moment of inertia Jy w.r.t. its center of gravity Gs ),
which has vertical motion zs and pitch motion θ ;

• the front unsprung mass mn1 , which has only vertical (hop) motion y1;
• the rear unsprung mass mn2 , which has only vertical (hop) motion y2.

Also shown in Fig. 8.2 are the two suspension springs, with stiffnesses k1 and k2,
and two shock absorbers, with damping coefficients c1 and c2, along with two
springs p1 and p2 to model the tire vertical stiffnesses. Again, to keep the anal-
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8.1 Vehicle Models for Ride and Road Holding 237

Fig. 8.2 Four-degree-of-freedom model to study ride and road holding

ysis simple, we assume that all these components have linear behavior. This is a
very unrealistic hypothesis since real suspensions are designed to have hardening
stiffness and are equipped with shock absorbers with more resistance during the
extension cycle than the compression cycle.

Inerters, with inertances b1 and b2, are also shown in Fig. 8.2. They have been
used sparingly and only in some race cars. They are included for greater generality.

The vehicle model shown in Fig. 8.2 has four degrees of freedom. Points A1

and A2 are the centers of the front axle contact patches and of the rear axle contact
patches, respectively. The two functions h1(t) and h2(t) are the road profiles as
“felt” by the car, that is through the tires.

The sprung mass has two degrees of freedom zs and θ . Alternatively, we could
use, e.g., the vertical displacements z1 and z2. All displacements and rotations are
absolute and taken from the static equilibrium position of the vehicle. We are inves-
tigating the oscillations with respect to the equilibrium position, that is the configu-
ration the vehicle would have on a perfectly flat road.

The vehicle model shown in Fig. 8.2 is governed by three sets of equations, as
usual:

(1) congruence equations:

z1 = zs + a1θ

z2 = zs − a2θ
(8.2)

that is a purely geometrical link between coordinates;
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(2) equilibrium equations:

msz̈s = F1 + F2

Jyθ̈ = F1a1 − F2a2

mn1 ÿ1 = N1 − F1

mn2 ÿ2 = N2 − F2

(8.3)

that is a link between forces or couples and accelerations;
(3) constitutive equations:

F1 = −k1(z1 − y1) − c1(ż1 − ẏ1) − b1(z̈1 − ÿ1) = −(Fk1 + Fc1 + Fb1)

F2 = −k2(z2 − y2) − c2(ż2 − ẏ2) − b2(z̈2 − ÿ2) = −(Fk2 + Fc2 + Fb2)

N1 = −p1(y1 − h1)

N2 = −p2(y2 − h2)

(8.4)

which model springs, shock absorbers and inerters.

By F1 and F2 we mean the vertical forces exchanged between the sprung mass and
the two unsprung masses, respectively. By N1 and N2 we mean the forces exchanged
by each axle with the road. All forces must be intended as perturbations with respect
to the static equilibrium position. That is why the weight was not included in the
equations.

Combining the above sets of equations, we end up with a system of four linear
differential equations with constant coefficients. They are the governing equations
of this vehicle model

Mẅ + Cẇ + Kw = h (8.5)

where w = w(t) = (zs(t), θ(t), y1(t), y2(t)) is the coordinate vector, and h = h(t) =
(0,0,p1h1(t),p2h2(t)) is the road excitation. We also have the mass matrix M

M = Mm + Mb

=

⎡
⎢⎢⎣

ms 0 0 0
0 Jy 0 0
0 0 mn1 0
0 0 0 mn2

⎤
⎥⎥⎦+

⎡
⎢⎢⎣

b1 + b2 b1a1 − b2a2 −b1 −b2

b1a1 − b2a2 b1a
2
1 + b2a

2
2 −b1a1 b2a2

−b1 −b1a1 b1 0
−b2 b2a2 0 b2

⎤
⎥⎥⎦

(8.6)

the damping matrix C

C =

⎡
⎢⎢⎣

c1 + c2 c1a1 − c2a2 −c1 −c2

c1a1 − c2a2 c1a
2
1 + c2a

2
2 −c1a1 c2a2

−c1 −c1a1 c1 0
−c2 c2a2 0 c2

⎤
⎥⎥⎦ (8.7)
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and the stiffness matrix K

K = Kk + Kp

=

⎡
⎢⎢⎣

k1 + k2 k1a1 − k2a2 −k1 −k2

k1a1 − k2a2 k1a
2
1 + k2a

2
2 −k1a1 k2a2

−k1 −k1a1 k1 0
−k2 k2a2 0 k2

⎤
⎥⎥⎦+

⎡
⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 p1 0
0 0 0 p2

⎤
⎥⎥⎦ (8.8)

A linear four-degree-of-freedom system is quite simple in principle, but also
quite cumbersome to be dealt with analytically without the aid of a computer. There-
fore, for educational purposes, it is useful to simplify this model further. The basic
idea is to extract two models, both with two degrees of freedom. One model to study
free vibrations and the other model to study forced vibrations. The two models are
virtually obtained by cutting off the unnecessary parts (gray lines in Fig. 8.3) from
the four-degree-of-freedom system.

The sprung mass ms is always much higher than the total unsprung mass mn =
mn1 + mn2 . Typically we have ms � 10mn. Moreover, tire stiffness is, except in
Formula cars, much higher than the suspension stiffness. Typically, pi = 6–12 ki .
Therefore, the tires have little influence on the free vibrations and can be considered
as rigid, as done in Fig. 8.3(top). In Formula cars we have pi = 1–2 ki .

On the other hand, the road disturbances involve also high frequencies, and tire
stiffness has to be taken into account. For studying forced vibrations, the vehicle is
then split into two half-car models, as in Fig. 8.3(bottom), where

ms1 = ms

a2

l
and ms2 = ms

a1

l
(8.9)

Instead of the half-car model, it is customary to use the quarter car model, which is
like the half-car model with all quantities divided by two.

Both models are rather crude approximations, but nevertheless they can provide
very useful insights on how to choose the springs and shock absorbers (and, just in
case, the inerters as well).

8.2 Quarter Car Model

The quarter car model is shown in Fig. 8.4. For simplicity we dropped the subscript
in all quantities. The model consists of a sprung mass ms connected via the primary
suspension to the unsprung mass mn of the axle. The suspension is supposed to
have linear behavior with stiffness k and damping coefficient c. An inerter, with
inertance b, is also included. The tire vertical elasticity is represented again by a
linear spring p. The tire damping is so small that it can be neglected.

This model is mainly used to study the vibrational behavior of the vehicle when
travelling on an uneven road. Therefore, the lowermost part of p receives from
the road a sinusoidal displacement h(t) = H cosΩt . Someone may object that real
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Fig. 8.3 “Extraction” of two-degree-of-freedom models to study free vibrations (top) and forced
vibrations (bottom)

roads are not sinusoidal in shape. However, any road profile g(x) of length L can
be expressed by its Fourier series

g(x) =
∞∑

n=0

[
dn sin

(
2πn

L
x

)
+ en cos

(
2πn

L
x

)]
(8.10)

that is as an infinite sum of trigonometric functions. Fortunately, it is possible to
take only the first n terms without missing too much information. If the vehicle
travels with speed u, the Fourier term with spatial period L/n acts as a forcing
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Fig. 8.4 Quarter car model

displacement of frequency fn = nu/L. Therefore, the frequency of the excitation
depends, obviously, on the speed of the vehicle.

Because of the assumed linearity of the quarter car model, we can take advantage
of the superposition principle, and “feed” the system with one Fourier term at a time.
Should the system be nonlinear, this trick would be meaningless and we could no
longer apply a simple sinusoidal forcing function.

The quarter car model is a damped two-degree-of-freedom system. We employ as
coordinates the vertical displacement z of the sprung mass and the vertical displace-
ment y (hop) of the unsprung mass. The road surface vertical displacement h(t) can
be derived from the road surface profile and the car’s speed. The equations of mo-
tion of the quarter car model are readily obtained from Fig. 8.4 (recommended), or
as a special case of the equations given in Sect. 8.1

msz̈ = −b(z̈ − ÿ) − c(ż − ẏ) − k(z − y)

mnÿ = −b(ÿ − z̈) − c(ẏ − ż) − k(y − z) − p(y − h)
(8.11)

where, as already stated, h(t) = H cosΩt is the excitation due to the road asperities.
The same equations in matrix notation become

Mẅ + Cẇ + Kw = h (8.12)

with mass matrix M

M = Mm + Mb =
[
ms 0
0 mn

]
+
[

b −b

−b b

]
=
[
ms + b −b

−b mn + b

]
(8.13)

damping matrix C

C =
[

c −c

−c c

]
(8.14)

and stiffness matrix K

K = Kk + Kp =
[

k −k

−k k

]
+
[

0 0
0 p

]
=
[

k −k

−k k + p

]
(8.15)
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We are mainly interested in the steady-state response, that is in the particular
integral of the system of differential equations (8.11). In a case like this, it can be
expressed as

z(t) = Z cos(Ωt + ϕ)

y(t) = Y cos(Ωt + ψ)
(8.16)

that is in oscillations with the same angular frequency Ω of the excitation, but also
with nonzero phases ϕ and ψ .

The mathematical analysis is much simpler if complex numbers are employed.
The forcing function is therefore given as

h(t) = H(cosΩt + i sinΩt) = HeiΩt (8.17)

with H ∈ R. The steady-state solution is

z(t) = Z
[
cos(Ωt + ϕ) + i sin(Ωt + ϕ)

]= Zei(Ωt+ϕ) = ZeiϕeiΩt = ZeiΩt

y(t) = Y
[
cos(Ωt + ψ) + i sin(Ωt + ψ)

]= Y ei(Ωt+ψ) = Y eiψeiΩt = YeiΩt

(8.18)

where Z = Zeiϕ and Y = Y eiψ are complex numbers with modulus Z and Y , and
phases ϕ and ψ .

Inserting these expressions into (8.11) and dropping eiΩt provides the following
algebraic system of equations in the complex unknowns Z and Y

{[(
k − bΩ2)− msΩ

2 + icΩ
]
Z − [(k − bΩ2)+ icΩ

]
Y = 0

− [(k − bΩ2)+ icΩ
]
Z + [p + (k − bΩ2)− mnΩ

2 + icΩ
]
Y = pH

(8.19)

whose solution is

Z

H
= p[(k − bΩ2) + icΩ]

[(k − bΩ2) − msΩ2 + icΩ][p + (k − bΩ2) − mnΩ2 + icΩ] − [(k − bΩ2) + icΩ]2

= p
[(k − bΩ2) + icΩ]
d(Ω2) + icΩe(Ω2)

= Gz(Ω) (8.20)

and

Y

H
= p

[(k − bΩ2) − msΩ
2 + icΩ]

d(Ω2) + icΩe(Ω2)
= Gy(Ω) (8.21)

where, for compactness,

d
(
Ω2)= msmnΩ

4 − {[p + (k − bΩ2)]ms + (k − bΩ2)mn

}
Ω2 + pk

e
(
Ω2)= p − (ms + mn)Ω

2
(8.22)

www.cargeek.ir

www.cargeek.ir

http://www.cargeek.ir/
http://www.cargeek.ir/


8.2 Quarter Car Model 243

The non-dimensional complex functions Gz(Ω) and Gy(Ω), given in (8.20) and
(8.21), can be directly employed to obtain the steady-state solution

z(t) = HGz(Ω)eiΩt

y(t) = HGy(Ω)eiΩt
(8.23)

From a practical point of view, we are mostly interested in the amplitude of these
oscillations as functions of Ω

Z

H
= |Z|

H
= p

√
(k − bΩ2)2 + c2Ω2

d2(Ω2) + c2Ω2e2(Ω2)
= ∣∣Gz(Ω)

∣∣ (8.24)

Y

H
= |Y|

H
= p

√
[(k − bΩ2) − msΩ2]2 + c2Ω2

d2(Ω2) + c2Ω2e2(Ω2)
= ∣∣Gy(Ω)

∣∣ (8.25)

However, the phases can be obtained as well

tanϕ = Im(Z)

Re(Z)
, tanψ = Im(Y)

Re(Y)
(8.26)

The amplitude of the vertical accelerations of the sprung and unsprung masses
are given by Ω2Z and Ω2Y , respectively.

Due to the oscillations, there are fluctuations in the vertical force exchanged by
the tires with the road. More precisely, we have a sinusoidal force NeiΩt superim-
posed on the constant force due to weight and, possibly, to aerodynamic downforces.
From the quarter car model of Fig. 8.4 we get

NeiΩt = p(h − y) = p(H − Y)eiΩt (8.27)

From (8.21), we obtain the amplitude N as a function of the angular frequency Ω

N

pH
= |N|

pH
=
∣∣∣∣msmnΩ

4 − (ms + mn)Ω
2[(k − bΩ2) + icΩ]

d(Ω2) + icΩe(Ω2)

∣∣∣∣

= Ω2

√
[msmnΩ2 − (k − bΩ2)(ms + mn)]2 + c2Ω2(ms + mn)2

d2(Ω2) + c2Ω2e2(Ω2)
(8.28)

8.2.1 The Inerter as a Spring Softener

It is worth noting that all these expressions include the term k − bΩ2. This is the
key to understand the inerter (also called J-Damper). It is pretty much like having
a system whose suspension stiffness is sensitive to the frequency Ω of the excita-
tion. At low frequencies k − bΩ2 � k, but at high frequencies k − bΩ2 � k. The
inertance b acts as a spring softener. This is a very interesting feature in Formula
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cars, with high aerodynamic loads, because we can use very stiff springs, thus lim-
iting the spring deflection due to variable aerodynamic downforces, but at the same
time the car will be able to absorb the high frequency road asperities, as if it were
equipped with not-so-stiff springs. We will elaborate this idea quantitatively and in
more detail in Sect. 8.3.3.

8.2.2 Quarter Car Natural Frequencies and Modes

A linear two-degree-of-freedom vibrating system, damped or not, has two natural
modes, each one associated with its natural frequency.

To obtain these two modes, we consider the homogeneous counterpart of the
system of differential equations (8.12)

Mẅo + Cẇo + Kwo = 0 (8.29)

We seek a solution like

wo = xeμt (8.30)

which, when inserted into (8.29), yields

eμt
(
μ2M + μC + K

)
x = 0 (8.31)

The four values of μ that make (8.30) truly a solution are the roots of the character-
istic equation

det
(
μ2M + μC + K

)= 0 (8.32)

In an underdamped vibrating system, the four μ are complex numbers, complex
conjugates in pairs

μ1 = −ζ1ω1 + iω1

√
1 − ζ 2

1 , μ3 = μ̄1 = −ζ1ω1 − iω1

√
1 − ζ 2

1

μ2 = −ζ2ω2 + iω2

√
1 − ζ 2

2 , μ4 = μ̄2 = −ζ2ω2 − iω2

√
1 − ζ 2

2

(8.33)

where 0 ≤ ζi < 1 are the damping ratios (or damping factors), and ωi are the natural
angular frequencies of the undamped system. The two natural angular frequencies

of the damped system (i.e., the quarter car model) are ωdi
= ωi

√
1 − ζ 2

i .
Once the four μi have been obtained, we can go back to (8.31) and obtain the

corresponding generalized eigenvectors xi ∈C
2, again complex conjugates in pairs.

The general solution of (8.29) is given as linear combination of complex exponential
functions

wo(t) = γ1x1e(−ζ1ω1+iωd1 )t + γ̄1x̄1e(−ζ1ω1−iωd1 )t

+ γ2x2e(−ζ2ω2+iωd2 )t + γ̄2x̄2e(−ζ2ω2−iωd2 )t (8.34)
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As an introduction to the general case, it is useful to study first two very special
cases, that is c = 0 and c = ∞.

8.2.2.1 Undamped Quarter Car Model

According to the expression of d(ω2) in (8.22), the two natural angular frequencies
ω1 and ω2 of the undamped system are the solutions of the equation

msmnω
4 − {[p + (k − bω2)]ms + (k − bω2)mn

}
ω2 + pk = 0 (8.35)

that is

ω2
1,2 =k(mn + ms) + (b + ms)p

2mnms + 2b(mn + ms)

±
√−4k[mnms + b(mn + ms)]p + [k(mn + ms) + (b + ms)p]2

2mnms + 2b(mn + ms)
(8.36)

which, if there is no inerter b, simplifies into

ω2
1,2 = k(mn + ms) + msp ±√−4k(mnms)p + [k(mn + ms) + msp]2

2mnms

= 1

2

[
p + k

mn

+ k

ms

±
√(

p + k

mn

− k

ms

)2

+ 4k2

mnms

]
(8.37)

As already stated, in all road cars we have ms � mn and p � k. Therefore, we
can take the first-order Taylor expansion approximation of (8.37) for small values
of mn and k

ω2
1 � kp

(p + k)ms

and ω2
2 � p + k

mn

(8.38)

In most cases, this very simple formulæ provide very accurate estimates of the nat-
ural frequencies of the undamped quarter car model. For instance, with the data
reported in the caption of Fig. 8.6, we get the following values using first the exact
formula and then the approximate one

f1 = ω1

2π
= 1.254 Hz � 1.255 Hz

f2 = ω2

2π
= 12.64 Hz � 12.63 Hz

(8.39)

The results are almost identical. Typically, f2/f1 � 10.
Of course there is a clear physical interpretation. The two approximate natural

frequencies (8.38) would be the exact natural frequencies of the two one-degree-of-
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Fig. 8.5 One-degree-of-freedom systems for the approximate evaluation of the two natural fre-
quencies of the quarter car model (road cars only)

freedom systems shown in Fig. 8.5. Indeed, as also shown in Fig. 8.5, the two natural
modes of the undamped quarter car model are very peculiar. For instance, again with
the same data, the first mode, the one with f1 = 1.2 Hz, has z(t) = 8.9y(t), whereas
the second mode, with f2 = 12.6 Hz, has y(t) = −89.1z(t). That is, they look pretty
much as if only one mass at the time were oscillating.

A Formula 1 car exhibits similar figures, although with some noteworthy dif-
ferences. Typically, the undamped system has f1 � 5 Hz with z(t) = 2.5y(t) and
f2 � 32 Hz with z(t) = −25y(t).

However, it is very important to know that while the first natural mode is quite
insensitive to damping, the second natural mode is very damping dependent. For
instance, in a road car having what will be called the optimal damping copt, the
first mode has f1 = 1.21 Hz, which is very close to f1 = 1.25 Hz with no damping.
Moreover, the amplitude of z(t) is about 8.4 times the amplitude of y(t), pretty much
like in the undamped case. The second mode, on the other hand, has f2 = 11.1 Hz
instead of f2 = 12.6 Hz with no damping. But the most striking difference is that
the amplitude of y(t) is only about 12 times the amplitude of z(t), instead of about
90 times, as it was with no damping. This is to say that we should not extrapolate
results obtained with no damping to the real case, when there is a lot of damping
because of the shock absorbers.

8.2.2.2 Quarter Car with Stuck Shock Absorber

The other theoretical case is c = ∞, pretty much as travelling with a stuck shock
absorber. The system behaves like a one-degree-of-freedom system with only one
mass ms + mn on top of a spring p. There is only one natural frequency ωc =√

p/(ms + mn), as shown in Fig. 8.6.
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Fig. 8.6 Amplitude of the vertical acceleration of the sprung mass in a typical road car
(ms = 1 000 kg, mn = 100 kg, k = 70 kN/m and p = 560 kN/m)

8.3 Shock Absorber Tuning

The quarter car model can now be used as a tool for the selection of the damping
coefficient c of the shock absorber. Of course, we have first to set up our goal.
Typically, in road cars we are interested in minimizing the amplitude Ω2Z of the
vertical acceleration z̈ = Ω2ZeiΩt of the sprung mass, thus optimizing the passenger
comfort. On the other hand, in race cars we are more interested in minimizing the
amplitude N of the oscillating part of the vertical force NeiΩt , thus improving road
holding.

8.3.1 Comfort Optimization

To select the right amount of damping to optimize passenger comfort, let us plot
the normalized acceleration amplitude Ω2Z/H versus the angular frequency Ω of
the road excitation. This is done in Fig. 8.6 for some values of c, including the
two extreme cases c = 0 and c = ∞. The figure was obtained with ms = 1 000 kg,
mn = 100 kg, k = 70 kN/m and p = 560 kN/m, that is with ms = 10mn and p = 8k.

The plot for c = 0 and the plot for c = ∞ have four common points, marked by
O , A, B and C in Fig. 8.6. Obviously, all other curves, for any value of c, must pass
through the same points.

The best curve, and hence the best value of the damping coefficient c, is perhaps
the one with horizontal tangent at point A. It is a good compromise, as suggested in
1950 by Bourcier de Carbon [2]. As also shown in Fig. 8.6, lower or higher values
of c would yield less uniform plots.
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To obtain this optimal value copt, we have to impose that the derivative at A be
zero

∂(Ω2Z(c,Ω))

∂Ω

∣∣∣∣
Ω=ΩA

= 0 (8.40)

where Z = Z(c,Ω) is given in (8.24). The result is the sought optimal damping
coefficient copt

copt =
√

msk

2

√
p + 2k

p
(8.41)

where the second square root is quite close to one. With the data used to draw
Fig. 8.6 we get copt = 5 916.08 × 1.118 = 6 614.38 Ns/m. With this value of the
damping coefficient, we have that the two natural modes of the quarter car model

have, respectively, ζ1 = 0.34 and ω1

√
1 − ζ 2

1 = 8.1 rad/s for the first mode, and

ζ1 = 0.44 and ω1

√
1 − ζ 2

1 = 77.0 rad/s for the second mode. We see that both
modes are underdamped (ζi < 1), but with a far from negligible amount of damping.
One observation is in order here. Although the two values of ζi are quite similar, the
time-rate decaying of the two modes, which depend on ζiωi , are drastically different
because the two ωi are quite far apart. For instance, in one second the amplitude of
the first mode drops from 1 to e−0.34×8.61 = 0.05, while that of the second mode
drops to e−0.44×85.7 = 10−17. Quite a big difference.

It is worth noting that copt does not depend on the unsprung mass mn. There-
fore, it is not necessary to change the shock absorbers when, for instance, mounting
light alloy wheel rims. On the other hand, stiffer springs do require harder shock
absorbers.

Saying that mn does not affect copt does not imply that the unsprung mass has
no influence at all. The comfort performances for three different values of the ratio
mn/ms are shown in Fig. 8.7. The lower the unsprung mass, the better, because the
resulting curve is more uniform.

The formula for the optimal value of the damping coefficient here obtained per-
haps works to get a close to optimal damping coefficient for a Formula 1 car as
well. Figure 8.8 is the counterpart of Fig. 8.6. We see that the two figures are quite
different, but the copt curve is probably the best.

8.3.2 Road Holding Optimization

Needless to say that we need high vertical loads to have high friction forces. When
the road is not flat, the vertical force fluctuations may impair road holding. There-
fore, we are interested in how to determine the best shock absorber tuning to coun-
teract these force fluctuations as much as possible. The quarter car model can be
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Fig. 8.7 Amplitude of the vertical acceleration of the sprung mass for three values of the unsprung
mass (road car with ms = 1 000 kg, c = copt, k = 70 kN/m and p = 560 kN/m)

Fig. 8.8 Amplitude of the vertical acceleration of the sprung mass in a typical Formula 1 car

usefully employed to this end. We have already obtained in (8.28) the expression
of the amplitude of the sinusoidal component of the vertical load. Of course, it is
superimposed on the vertical load due to weight, load transfers and, possibly, aero-
dynamic downforces.

The plot of the normalized amplitude N/(pH) versus Ω is shown in Fig. 8.9
for several values of the damping coefficient c. As before, there are the curves for
the extreme cases c = 0 and c = ∞. In this case there are only three fixed points
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Fig. 8.9 Amplitude of the sinusoidal vertical load for a road car (ms = 1 000 kg, mn = 100 kg,
k = 70 kN/m and p = 560 kN/m)

Fig. 8.10 Amplitude of the sinusoidal vertical load for a road car for three values of the unsprung
mass and c = copt

O , Â and B̂ . The curve corresponding to c = 1
2copt, copt,2copt are also shown in

Fig. 8.9. As before, we have assumed ms = 1 000 kg, mn = 100 kg, k = 70 kN/m
and p = 560 kN/m, that is ms = 10mn and p = 8k.

The curve for c = copt is not as good as it was with respect to comfort. For road
holding optimization in road cars, it is better to use higher values of the damping
coefficient c, that is c > copt.

Reducing the unsprung masses is very beneficial for road holding, as shown in
Fig. 8.10. We see that the lower the unsprung mass, the lower the vertical force
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Fig. 8.11 Amplitude of the sinusoidal vertical load for a typical Formula 1 car

amplitude, and hence the better the road holding. Therefore, using light alloy wheels
is certainly a way to improve road holding.

8.3.3 The Inerter as a Tool for Road Holding Tuning

Formula cars, and Formula 1 cars in particular, have wings that provide fairly high
downforces at high speed. These devices are most efficient if kept at constant dis-
tance from the road surface. To reduce the spring deflections under variable aero-
dynamic loads, very stiff springs have to be used. However, stiff springs are not
very good to absorb road irregularities. Here is where the inerter comes into play. It
works as a sort of spring softener at high frequencies, while being almost irrelevant
with respect to static or slowly varying loads.

Let us have a look at the counterpart of Fig. 8.9 for, e.g., a Formula 1 car. The
plot of N/(pH) versus Ω for a Formula 1 car is shown in Fig. 8.11. Interestingly
enough, the value of copt is optimal indeed. Any other value would be worse.

But we are interested in increasing the spring stiffness k without impairing the
suspension capability to filter down road irregularities. Unfortunately, simply stiff-
ening the springs brings a worse plot of N/(pH), as shown in Fig. 8.12 (dashed
line). However, the inerter can help in balancing the stiffer spring, and, in fact we
end up with a much better plot (thick solid line in Fig. 8.12). Typically, we can
increase the stiffness by 10–20 %, with an inertance of 25–100 kg per wheel in a
Formula Indy car.

It is worth noting that in ordinary road cars the inerter would not be beneficial.
This is due to the totally different values of mass, stiffnesses, etc. Indeed, Figs. 8.9
and 8.11 are very different.
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Fig. 8.12 Beneficial effect of the inerter in a Formula 1 car with stiffer springs

8.4 Road Profiles

In probability theory, stationary ergodic process is a random process which exhibits
both stationarity and ergodicity. In essence this implies that the random process will
not change its statistical properties with time and that its statistical properties (such
as the theoretical mean and variance of the process) can be deduced from a single,
sufficiently long sample of the process.

Road elevation profiles are stationary ergodic processes. This allows for fairly
simple statistical treatment.

The Fourier transform F(ω) is a very powerful tool to obtain the frequency fea-
ture of a given function f (x)

F (ω) =
∫ +∞

−∞
f (x)e−iωxdx (8.42)

The function F(ω) ∈C is precisely the frequency spectrum of f (x).
We cannot apply directly the Fourier transform to a given road profile g(x) ∈ R

because it does not tend to zero when x → ±∞. However, we can introduce the
spatial autocorrelation function Rg(τ) defined by

Rg(τ) = lim
L→∞

1

L

∫ +L/2

−L/2
g(x)g(x + τ)dx (8.43)
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where L is the length of the road with profile g(x), and then compute its power
spectral density (PSD) as its Fourier transform

Sg(s) =
∫ +∞

−∞
R(τ)e−isτ dτ (8.44)

The power spectral density is measured in m2/(cycles/m), if g is in meters and s is
in cycles/m. Therefore, s is the spatial frequency.

If the vehicle travels at constant speed u, we can switch from the profile g(x) to
the time history h(t) by means of the simple formula h(t) = g(ut). The PSD Sh(f ),
measured in m/Hz, of h(t) can be obtained from Sg(s) using

Sh(f ) = Sg(f/u)

u
(8.45)

In general, if we know the PSD Sh(f ) of the excitation h(t) and the frequency
gain Gz(Ω) of the linear system at hand, we can easily obtain the PSD of the system
response z(t) as

Sz(f ) = ∣∣Gz(2πf )
∣∣2Sh(f ) (8.46)

where, as well known, Ω = 2πf .
For instance, the PSD Sa(f ) of the vertical acceleration z̈ of the sprung mass of

the quarter car model is

Sa(f ) = ∣∣(2πf )2Gz(2πf )
∣∣2Sh(f ), (8.47)

with Gz(Ω) = Gz(2πf ) given in (8.20).
There is experimental evidence that the PSD of road profiles has a typical trend:

the amplitude diminishes rapidly with the spatial frequency s. An often employed
empirical formula for this behavior is

Sg(s) = Bs−k (8.48)

Unfortunately, there is not much agreement on the value of the exponent k. Typically
it ranges between 2 and 4, including fractional values. The constant B characterizes
the roughness of the road profile. The smoother the profile, the lower B . It is worth
noting that the units to measure B are affected by the value of the exponent k.

According to (8.45), the counterpart of (8.48) in terms of time frequencies is

Sh(f ) = Buk−1f −k (8.49)

which, obviously, shows that increasing the vehicle speed brings an increment in the
PSD of the excitation.
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Fig. 8.13 Two-degree-of-freedom system for bounce and pitch analysis

8.5 Free Vibrations of Road Cars

The quarter car model looks at each axle as if it were alone. But it is not. Cars have
two axles, and both take part in the vehicle body oscillations. Moreover, when we
obtained the optimal value copt of the damping coefficient in (8.41) by means of
the quarter car model, that was a function of the suspension stiffness k, beside the
sprung mass ms and the tire vertical stiffness p. But how was the stiffness k set?
We do not have much freedom about ms and p, and we may assume both of them
as given for a certain kind of vehicle. But the stiffness k can be selected quite freely,
for both front and rear axles.

Free oscillations are what happens right after the car has hit an isolated bump
or hole. Since road cars usually do not employ the inerter, we use the even simpler
two-degree-of-freedom model shown in Fig. 8.13, instead of the model of Fig. 8.3.
As already discussed, we can safely consider the tires as rigid. The tires are indeed
much stiffer than the springs, and at low frequencies (1–2 Hz) the unsprung masses
oscillate very little. Moreover, the mode with higher natural frequency decays al-
most instantaneously, as already shown.

The analysis of the model of Fig. 8.13 will provide useful hints for the selection
and tuning of the front and rear stiffnesses k1 and k2.

8.5.1 Governing Equations

To obtain all relevant equations for the two-degree-of-freedom vehicle model under
investigation we follow the same path as in Sect. 8.1. We have (Fig. 8.13)

(1) congruence equations:

z1 = zs + a1θ

z2 = zs − a2θ
(8.50)
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that is a purely geometrical link between coordinates;
(2) equilibrium equations:

msz̈s = F1 + F2

Jyθ̈ = F1a1 − F2a2

(8.51)

that is a link between forces or couples and accelerations; and
(3) constitutive equations:

F1 = −k1z1 − c1ż1

F2 = −k2z2 − c2ż2
(8.52)

When combined all together, they provide the governing equations

msz̈s = −k1(zs + a1θ) − c1(żs + a1θ̇ ) − k2(zs − a2θ) − c2(żs − a2θ̇ )

Jy θ̈ = [−k1(zs + a1θ) − c1(żs + a1θ̇ )
]
a1

− [−k2(zs − a2θ) − c2(żs − a2θ̇ )
]
a2

(8.53)

that can also be written in matrix notation as

Mẅo + Cẇo + Kwo = 0 (8.54)

where wo = (zs, θ). Formally, they look like (8.5), except for being homogeneous
now. The 2 × 2 matrices are

M =
[
ms 0
0 Jy

]
(8.55)

C =
[

c1 + c2 c1a1 − c2a2

c1a1 − c2a2 c1a
2
1 + c2a

2
2

]
(8.56)

and

K =
[

k1 + k2 k1a1 − k2a2

k1a1 − k2a2 k1a
2
1 + k2a

2
2

]
(8.57)

Quite surprisingly, it is common practice in the vehicle dynamic community to
discard damping when studying free oscillations of a vehicle. Most books do that.
But why?

Actually, vehicles have a lot of damping (in the quarter car model we obtained
damping ratios ζi in the range 0.3–0.5). Perhaps they are the most damped system
in mechanical engineering, and a good engineer cannot discard something which is
not negligible at all. A rationale for neglecting damping should be provided, as a
minimum. Unfortunately, in most cases there is just a sentence stating that damping
will be neglected.

Free oscillations of undamped systems are much more predictable than those of
a general damped system. Moreover, through modal analysis they can be treated as
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a collection of single-degree-of-freedom oscillators. But, we insist, vehicles are not
undamped. They are very damped systems.

Fortunately, there is a way to have a damped system behave pretty much like an
undamped system: it must have proportional viscous damping (also called Rayleigh
damping). Modes of proportionally damped systems preserve the simplicity of the
real normal modes as in the undamped case.

8.5.2 Proportional Viscous Damping

The definition of proportional viscous damping is

C = αM + βK (8.58)

that is the damping matrix must be a linear combination of the mass and stiffness
matrices, for suitable constants α and β .

Systems with proportional viscous damping have exactly the same mode shapes
as the corresponding undamped systems. This is the key property.

The proof is quite simple. Inserting (8.58) into (8.54) and assuming, as usual,
wo(t) = xeμt , we get

(
μ2 + μα

)
Mx + (μβ + 1)Kx = 0 (8.59)

that is (
μ2 + μα

μβ + 1

)
Mx = −Kx (8.60)

With respect to the general case (8.31), we have only two matrices instead of three.
And it makes quite a big difference.

Now, letting

λ = μ2 + μα

μβ + 1
and A = −M−1K (8.61)

we end up with exactly the same eigenvalue problem as the undamped system

Ax = λx (8.62)

which provides two real eigenvalues λ1 and λ2, and the corresponding real eigen-
vectors x1 and x2.

Solving the first equation in (8.61) with λ = λ1, we obtain μ1 and μ3 = μ̄1.
Similarly, solving with λ = λ2 we obtain μ2 and μ4 = μ̄2. Therefore, we have ap-
parently four μj and only two eigenvectors xj . The point is that the eigenvectors
have real components, and hence coincide with their complex conjugates. Strictly
speaking, we have two couples of identical eigenvectors.
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The general solution, that is the free oscillations, for proportional damping (and
hence also for no damping, which is just a special case of proportional damping) is2

wo(t) = x1
(
γ1eμ1t + γ3eμ3t

)+ x2
(
γ2eμ2t + γ4eμ4t

)
(8.63)

Often, this equivalent expression is more convenient, which only involves real quan-
tities (cf. (6.179))

wo(t) = χ1x1e−ζ1ω1t sin(ωd1 t + ϕ1) + χ2x2e−ζ2ω2t sin(ωd2 t + ϕ2) (8.64)

where

μ1 = −ζ1ω1 + iωd1 and μ2 = −ζ2ω2 + iωd2 (8.65)

As usual, ζj are the damping factors and ωj are the angular frequencies of the cor-

responding undamped system, while ωdj = ωj

√
1 − ζ 2

j are the angular frequencies

of the damped system. The undamped system has λ = μ2, and hence

ωj =√−λj and ζj = 0 (8.66)

The four unknown constants depend on the four initial conditions.
The undamped and proportionally damped system share almost everything, ex-

cept the μj ’s. The really relevant aspect is that the eigenvectors xj are exactly the
same. This is the possible justification for “neglecting” the damping when studying
the free oscillations of a vehicle. But the vehicle must be designed to have propor-
tional viscous damping, indeed. And a good vehicle engineer should be well aware
of this requirement.

8.5.3 Vehicle with Proportional Viscous Damping

Looking at the three matrices (8.55), (8.56) and (8.57) for the case at hand, we see
that the matrix C and the matrix K share the very same structure. Therefore, the
only way to have proportional damping in a vehicle (without inerter) is to set α = 0
and select springs and shock absorbers such that

β = c1

k1
= c2

k2
(8.67)

thus having C = βK. This can be done fairly easily.

2The quarter car model is a two-degree-of-freedom system whose damping is certainly not propor-
tional. It is worth comparing (8.63) with the more general (8.34).
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From (6.161) we obtain

λ1,2 = − 1

2Jyms

[
Jy(k1 + k2) + ms

(
k1a

2
1 + k2a

2
2

)

∓
√[

Jy(k1 + k2) + ms

(
k1a

2
1 + k2a

2
2

)]2 − 4Jyms(a1 + a2)2k1k2

]
(8.68)

and the corresponding eigenvectors

x1,2 =
(

1

2(k1a1 − k2a2)ms

[
Jy(k1 + k2) − ms

(
k1a

2
1 + k2a

2
2

)

∓
√[

Jy(k1 + k2) + ms

(
k1a

2
1 + k2a

2
2

)]2 − 4Jyms(a1 + a2)2k1k2

]
,1

)

(8.69)

More compactly

x1 = Zs1

1
= zs1(t)

θ1(t)
and x2 = Zs2

1
= zs2(t)

θ2(t)
(8.70)

which means that the free oscillations are the linear combination of the two natural
modes

zs(t) = χ1Zs1e−ζ1ω1t sin(ωd1 t + ϕ1) + χ2Zs2e−ζ2ω2t sin(ωd2 t + ϕ2)

= zs1(t) + zs2(t)

θ(t) = χ1e−ζ1ω1t sin(ωd1 t + ϕ1) + χ2e−ζ2ω2t sin(ωd2 t + ϕ2)

= θ1(t) + θ2(t)

(8.71)

The time histories for each mode are shown in Fig. 8.14. The two coordinates move
in a synchronous way.

Each natural mode is an oscillation around a point Pi which has constantly zero
vertical velocity. These points P1 and P2 are called nodes3 and are defined as those
points at which no vertical motion occurs when the system oscillates according to
only one mode. Their position can be immediately obtained from (8.70). Each node
Pj is at a horizontal distance dj from Gs equal to Zsj , taken in the positive direction
if Zsj is negative, and vice versa. In some sense, in a vehicle the eigenvectors can
be visualized with a yardstick. This is not magic, it suffices to solve the equation

0 = żsj (t) + dj θ̇j (t) =⇒ dj = żsj (t)

θ̇j (t)
= zsj (t)

θj (t)
= Zsj (8.72)

taking (8.70) into account. The two natural modes and the corresponding nodes
are shown in Fig. 8.15. Typically, the first mode, that is the one with lower natural
frequency, has the node behind the rear axle. This mode is called bounce. The second
mode has its node located ahead of Gs , near the front seat. This mode is called pitch.

3Other common names are motion centers or oscillation centers.
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8.5 Free Vibrations of Road Cars 259

Fig. 8.14 Time histories for
bounce (top) and pitch
(bottom) in case of
proportional damping
(synchronous motion)

We remark that fixed nodes are a prerogative of proportionally damped systems.
More general systems still have two natural modes, but in each mode the two coor-
dinates zsj (t) and θj (t) are no longer equal to zero simultaneously, i.e., the motion
is not synchronous. Therefore, their ratio dj (t) is a function of time and ranges from
−∞ to +∞. At each time instant there is a different fixed point. We will discuss
further this topic in Sect. 8.7.

As already stated, the nodes also mark where the principal coordinates zb and zp

are, as shown in Fig. 8.16. The system behaves precisely as if it were made up of
two concentrated masses mb and mp , each one with its own spring kb and kp and
shock absorber cb and cp , respectively.

All these quantities come from the diagonalization of the matrices. Let S be the
matrix whose columns are the two eigenvectors (8.70), that is

S = [x1|x2] (8.73)

We have that
[
mb 0
0 mp

]
= ST MS,

[
cb 0
0 cp

]
= ST CS,

[
kb 0
0 kp

]
= ST KS (8.74)

In case of proportional damping, the shape of both modes (and hence the position
of both nodes) depends on two nondimensional parameters. The first parameter is
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Fig. 8.15 Nodes of the two natural modes (proportional damping)

Fig. 8.16 Principal coordinates and equivalent system (proportional damping)

the dynamic index

ρ = Jy

msa1a2
(8.75)

Usually, in ordinary road cars ρ ranges between 0.90 and 0.97. It is a measure of
how far the vehicle mass is distributed from its center of mass. Of course, ρ depends
on the whole vehicle architecture and it is very difficult to change it.

Another very useful parameter is the ratio η

η = k1a1

k2a2
(8.76)

which characterizes how the axle stiffnesses relate to each other.
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8.5 Free Vibrations of Road Cars 261

For a deeper comprehension of the possible effects of these two parameters, we
analyze the model of Fig. 8.13 in some special cases, before addressing how to tune
the suspension stiffnesses in the general case.

For simplicity, we consider here the undamped system, whose governing equa-
tions are

msz̈s + (k1 + k2)zs + (k1a1 − k2a2)θ = 0

Jyθ̈ + (k1a1 − k2a2)zs + (k1a
2
1 + k2a

2
2

)
θ = 0

(8.77)

8.5.3.1 Case 1: η = 1

If the suspension stiffnesses are selected such that η = 1, that is

k1a1 = k2a2 (8.78)

the two equations in (8.77) become uncoupled. Both matrices are diagonal, which
means that zs and θ are the principal coordinates. The two undamped natural angular
frequencies are

ω1 =
√

k1 + k2

ms

, ω2 =
√

k1a
2
1 + k2a

2
2

Jy

(8.79)

Their ratio is equal, in this case, to the square root of the dynamic index

(
ω1

ω2

)2

= ρ (8.80)

The two eigenvalues are simply (cf. (8.69))

x1 = (1,0) and x2 = (0,1) (8.81)

The bounce mode is a pure vertical translation and the pitch mode is a rotation
around Gs = P2.

8.5.3.2 Case 2: ρ = 1

Let us assume that a vehicle has ρ = 1, that is

Jy = ma1a2 (8.82)

In this case the two principal coordinates are the vertical displacements z1 and z2
given in (8.2) and in Fig. 8.13, that is the displacements of the vehicle body at the
two axles. After a little algebra, it is possible to rewrite the governing equations as

ms1 z̈1 + k1z1 = 0

ms2 z̈2 + k2z2 = 0
(8.83)
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where

ms1 = ms

a2

a1 + a2
, ms2 = ms

a1

a1 + a2
(8.84)

The undamped natural frequencies are

ω1 =
√

k1

ms1

, ω2 =
√

k2

ms2

(8.85)

Their ratio is, in this case, equal to the square root of η

(
ω1

ω2

)2

= k1a1

k2a2
= η (8.86)

The two eigenvectors in the original coordinates zs and θ are (cf. (8.69))

x1 = (a2,1) and x2 = (−a1,1) (8.87)

The nodes are precisely over the front axle and the rear axle, as expected. Otherwise,
z1 and z2 would not be the principal coordinates.

8.5.3.3 Case 3: η = 1 and ρ = 1

But what happens if we set both η and ρ equal to one? From (8.80) and (8.86) we
obtain that (

ω1

ω2

)2

= 1 (8.88)

that is the two undamped modes have exactly the same natural frequency.
The analysis of the shape of the two modes is more tricky. Apparently there is

a paradox: the modes obtained for η = 1 are not consistent with those obtained for
ρ = 1, and vice versa. Which prevails? There is only one way out. Any point can
be a node, that is, any vector x is an eigenvector. This happens because the matrix
A = −M−1K is like the identity matrix I, times a suitable constant.

A vehicle designed to have η = ρ = 1 would have a very unpredictable behavior.
As a matter of fact, a real vehicle could fulfill this condition only approximately.
Therefore, the two nodes would be quite randomly located. Certainly, not a desirable
behavior.

8.6 Tuning of Suspension Stiffnesses

So far we have obtained the following results about the vehicle free oscillations:

(1) tires can be considered as rigid;
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(2) damping should be proportional;
(3) the two natural frequencies of the undamped system are very close to the natural

frequencies of the proportionally damped system;
(4) the shape of the modes of the undamped system are exactly equal to the shape

of the modes of the proportionally damped system;
(5) η = ρ = 1 must be avoided.

Now we can proceed to discus how to choose k1 and k2. There are basically two
requirements for road cars:

• both natural frequencies must fall in the range 1.0–1.5 Hz;
• the pitch mode should have its node located at about the front seat.

The first rule comes from the observation that oscillations at 1.0–1.5 Hz are quite
comfortable for human beings. The second rule is an attempt to reduce the pitch
motion of the driver. Pitch is typically more annoying than bounce.

As already stated, the value of ρ cannot be modified, unless the vehicle is com-
pletely redesigned. Modern road cars have ρ � 0.95. To locate the pitch node on the
front seat we can act on η, that is on the relative stiffnesses. Usually, a good value is
η � 0.95. With both η and ρ slightly lower than one, the car oscillations are like in
Fig. 8.15.

8.6.1 Optimality of Proportional Damping

Summing up, for a good suspension design we have found that we should fulfill
these requirements

• cj � copt;
• proportional viscous damping;
• η � 0.95.

But do they conflict with each other or not? Let us develop this point.
Optimal damping requires (cf. (8.41))

c1 �
√

ms1k1

2
and c2 �

√
ms2k2

2
(8.89)

where ms1 = msa2/l and ms2 = msa1/l. At the same time, proportional damping
requires c1/k1 = c2/k2 = β , which combined with the former expression means

√
ms1k1

2

1

k1
�
√

ms2k2

2

1

k2
(8.90)

that is √
msa2

k1
�
√

msa1

k2
=⇒ k1a1 � k2a2 =⇒ η � 1 (8.91)

Therefore, we see that these three requirements do not conflict with each other.
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8.6.2 A Numerical Example

Crunching numbers helps a lot to grasp what we are really doing.
Let a vehicle have these features:

• sprung mass ms = 1 000 kg and moment of inertia Jy = 1 620 kg m2;
• a1 = 1.2 m and a2 = 1.5 m;
• axle vertical stiffnesses k1 = 31 500 N/m and k2 = 28 000 N/m;
• proportional damping with β = c1/k1 = c2/k2 = 0.0936 s.

We obtain immediately the dynamic index

ρ = Jy

msa1a2
= 1 620

1 800
= 0.9 (8.92)

and the ratio

η = k1a1

k2a2
= 31.5 × 1.2

28.0 × 1.5
= 0.9 (8.93)

Both ρ and η are lower than one, although k1 > k2.
The matrix A is

A = −
[

59.5 −4.2
−2.592 66.89

]
(8.94)

with eigenvalues

λ1 = −58.24 s−2, λ2 = −68.15 s−2 (8.95)

and eigenvectors

x1 = (3.336,1), x2 = (−0.486,1) (8.96)

The bounce mode has its node 3.336 m behind Gs , and hence 3.33 − 1.50 =
1.83 m behind the rear axle (Fig. 8.15). The pitch mode has its node 0.486 m ahead
of Gs .

Should the system be undamped, the natural frequencies would be

f1 =
√−λ1

2π
= 1.21 Hz, f2 =

√−λ2

2π
= 1.31 Hz (8.97)

These frequencies could be estimated by means of the simple formulæ (8.79). The
approximate values are f1 � 1.23 Hz and f2 � 1.30 Hz, quite close to the exact
ones although η �= 1.

With proportional damping, we have to solve (8.61)

μ2 − βλiμ − λi = 0 (8.98)

with β = c1/k1 = c2/k2 = 0.0936 s, thus getting

μ1,3 = −2.73458 ± i7.12481 s−1, μ2,4 = −3.19975 ± i7.60983 s−1 (8.99)
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From the imaginary part we obtain the natural frequencies of the damped system

fs1 = Im(μ1)

2π
= 1.13 Hz, fs2 = Im(μ3)

2π
= 1.21 Hz (8.100)

They are about 10 % lower than those of the undamped system. Both fall within
the acceptable range. The bounce and pitch modes have ζ1 = 0.36 and ζ2 = 0.39,
respectively. There is quite a lot of damping indeed.

If, just to see what happens, we set Jy = 1980 kg m2, thus having ρ = 1.1, we get
that the bounce mode has f1 = 1.24 Hz and its node located 2.93 m ahead of Gs ,
while the pitch mode has f2 = 1.16 Hz and its node located at 0.67 m behind Gs . As
expected, many things have been inverted, like the node positions and the frequency
order.

8.7 Non-proportional Damping

We have insisted many times about having a vehicle with springs and shock ab-
sorbers tuned to have proportional damping. As shown in Fig. 8.15, fixed nodes
are a prerogative of proportionally damped systems. This is the outcome of having
synchronous motion of both degrees of freedom in each natural mode, as shown in
Fig. 8.14.

On the contrary, a vehicle with non-proportional damping has non-synchronous
motion, as shown in Fig. 8.17, where the front damping coefficient has been reduced
by 10 %, while the rear damping coefficient has been increased by 10 %. Also shown
in Fig. 8.17 are the plots of d1(t) and d2(t), that is the time-varying positions of the
nodes w.r.t. Gs

0 = żsj (t) + dj (t)θ̇j (t) =⇒ dj (t) = żsj (t)

θ̇j (t)
(8.101)

These positions are functions of time and cycle from zero (when żs = 0) to ±∞
(when θ̇ = 0). Therefore, the vehicle still has two modes, but their shapes are some-
how mixed up. They are not so neatly different as they are with proportional damp-
ing.

Actually, in some sense, both modes share some fundamental features. In both
modes there are time instants in which żs = 0 and hence the vehicle body is rotating
around Gs , and other time instants in which θ̇ = 0 and hence the vehicle body is
having a pure vertical translation.

8.8 Interconnected Suspensions

So far we have employed the model of Fig. 8.13. Implicitly, we have considered it
to be quite a general model for studying the ride of a two-axle vehicle. But it is not.
Let us address the problem from a fresh point of view.
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Fig. 8.17 Time histories for bounce (top) and pitch (bottom) in case of non-proportional damping
(non-synchronous motion)

Still using zs and θ as coordinates, a more general form of the equations of
motion (8.77) for a linear two-degree-of-freedom undamped system are

msz̈s + kzzzs + kzθ θ = 0

Jyθ̈ + kθzzs + kθθ θ = 0
(8.102)

where kzθ = kθz.
Each stiffness has a clear physical meaning. Let us impose a pure translation zs to

the system, that is with θ = 0. The system reacts with a force −kzzzs and a couple
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Fig. 8.18 Schematic for interconnected suspensions

−kθzzs . Similarly, imposing a pure rotation around Gs , the system reacts with a
force −kzθ θ and a couple −kθθ θ .

In general, any 2×2 stiffness matrix is characterized by three coefficients. But in
the system of Fig. 8.13 we have only two parameters, namely k1 and k2. Therefore
the following equations

k1 + k2 = kzz

k1a1 − k2a2 = kzθ

k1a
2
1 + k2a

2
2 = kθθ

(8.103)

may not all be fulfilled. As anticipated, the scheme of Fig. 8.13 is not as general as
it may seem at first. We need a suspension layout with three springs, although we
still have only two axles.

Interconnected suspensions are the solution to this apparent paradox. A very ba-
sic scheme of interconnected suspensions is shown in Fig. 8.18. Its goal is to explain
the concept, not to be a solution to be adopted in real cars (although, it was actually
employed many years ago).

To understand how it works, first suppose the car bounces, as in Fig. 8.19. The
springs contained in the floating device F get compressed, thus stiffening both axles.
On the other hand, if the car pitches, as in Fig. 8.20, the floating device F just
translates longitudinally, without affecting the suspension stiffnesses. This way we
have introduced the third independent spring k3 in our vehicle.

Obviously, hydraulic interconnections are much more effective, but the principle
is the same. We have an additional parameter to tune the vehicle oscillatory behavior.
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Fig. 8.19 Interconnected suspensions activated when bouncing

Fig. 8.20 Interconnected suspensions not activated when pitching

Although only a few cars have longitudinal interconnection, almost all cars are
equipped with torsion (anti-roll) bars, and hence they have transversal interconnec-
tion. An example is shown in Fig. 8.21.

Using interconnected suspensions may lead to non-proportional damping, if
proper counteractions are not taken, that is if the floating device F adds a stiffness
k3 without also adding a damping coefficient c3.

8.9 Summary

In this chapter, the ride behavior of vehicles has been investigated. To keep the
analysis very simple, two two-degree-of-freedom models have been formulated. The
first, called quarter car model, has been used for determining the right amount of
damping to have good comfort and/or road holding when the vehicle travels on
a bumpy road (forced oscillations). In this framework, the inerter has been also
introduced and discussed.
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Fig. 8.21 Transversal interconnection by means of the anti-roll bar [6]

Free oscillations have been studied assuming the tires are perfectly rigid. The
importance of proportional damping has been highlighted. This analysis has given
indications on how to select spring stiffnesses.

Interconnected suspensions have been mentioned to show how to have a very
general stiffness matrix.

8.10 List of Some Relevant Concepts

p. 236 the inerter is a device that provides a force proportional to the relative accel-
eration between its attachment points;

p. 241 the quarter car model is mainly used to study the vibrational behavior of a
vehicle travelling on an uneven road;

p. 243 the inertance acts as a spring softener at high frequencies;
p. 247 the quarter car model is a tool for the selection of the damping coefficient of

the shock absorbers;
p. 256 systems with proportional viscous damping have exactly the same mode

shapes as the corresponding undamped systems;
p. 258 only vehicles with proportional viscous damping have simple bounce and

pitch modes.

References

1. Bastow D, Howard G, Whitehead JP (2004) Car suspension and handling, 4th edn. SAE Inter-
national, Warrendale

www.cargeek.ir

www.cargeek.ir

http://www.cargeek.ir/
http://www.cargeek.ir/


270 8 Ride Comfort and Road Holding

2. Bourcier de Carbon C (1950) Theorie mathématique et réalisation pratique de la suspension
amortie des véhicules terrestres. In: 3rd Congres Technique de l’Automobile, Paris

3. Dixon JC (1991) Tyres, suspension and handling. Cambridge University Press, Cambridge
4. Font Mezquita J, Dols Ruiz JF (2006) La Dinámica del Automóvil. Editorial de la UPV, Valen-

cia
5. Gillespie TD (1992) Fundamentals of vehicle dynamics. SAE International, Warrendale
6. Longhurst C (2013) www.carbibles.com
7. Popp K, Schiehlen W (2010) Ground vehicle dynamics. Springer, Berlin
8. Smith MC (2002) Synthesis of mechanical networks: the inerter. IEEE Trans Autom Control

47:1648–1662
9. Wong JY (2001) Theory of ground vehicles. Wiley, New York

www.cargeek.ir

www.cargeek.ir

http://www.carbibles.com
http://www.cargeek.ir/
http://www.cargeek.ir/


Chapter 9
Handling with Roll Motion

So far we have investigated the handling behavior of a vehicle under the assumption
of negligible roll. Actually, we have not completely discarded roll angles, as they
are absolutely necessary for evaluating, e.g., lateral load transfers. But we have not
considered, for instance, the inertial effects of roll motion.

In this chapter, the roll motion is taken into account (Fig. 9.1). It is hard work, as
the analysis becomes more involved [7]. However, it also sheds light onto one of the
most controversial concepts in vehicle dynamics: the roll axis [1–4, 8], in this book
renamed no-roll axis. This concept has been already discussed in Sect. 3.8.8, but it
will be considered again here.

We state from the very beginning what the outcome of our analysis will be: the
roll axis, as that axis about which the vehicle rolls, does not exist. Or, in other words,
the concept of an axis about which the vehicle rolls is meaningless. We understand
it sounds harsh, but that is the way it is. There is no such thing as an axis about
which the vehicle rolls, albeit the vehicle rolls indeed. A similar conclusion was also
obtained in [5]. The no-roll axis, as defined in Sect. 3.8.8, maintains its validity.

9.1 Vehicle Position and Orientation

Defining the position and orientation of a vehicle when roll is assumed to be zero
is a simple matter. As shown in Fig. 3.3, the motion is two-dimensional and hence
it suffices to know, with respect to a ground-fixed reference system, the two coordi-
nates of the center of mass G and the yaw angle ψ .

Including roll (and, perhaps, also pitch) means having to deal with a full three-
dimensional problem. Therefore, we must employ more sophisticated tools. Quite
paradoxically, it turns out that it is easier to define unambiguously the orientation
of the vehicle body, rather than the position of the vehicle. The reason is that the
concept of “position of the vehicle” is not so clear anymore. As a matter of fact,
roll causes point G to move sideways with respect to the wheels, but this movement
does not change the “position of the vehicle” directly. In other words, we pretend
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Fig. 9.1 Vehicle basic scheme including roll motion φ

that the lateral velocity v of the vehicle does not contain any roll contribution. We
will address this important aspect shortly. First, some other concepts need to be
introduced.

9.2 Yaw, Pitch and Roll

Although everybody has an intuitive notion of roll, pitch and yaw of a vehicle, we
need a more precise definition at this stage. The goal is to know the orientation of the
vehicle body (assumed to be a rigid body) with respect to a ground-fixed reference
system S0. A typical approach is to give a sequence of three elemental rotations,
that is rotations about the axes of a chain of coordinate systems.

The three elemental rotations must follow a definite order. In other words, the
same rotations in a different order provide a different orientation. This aspect can
be appreciated by a simple example. In Fig. 9.2(a), a parallelepiped is rotated by
90 degrees about the axis i and then by −90 degree about the axis j. In Fig. 9.2(b),
the same parallelepiped is subject to the same two rotations, but in reverse order.
The final orientation is totally different, thus confirming that finite rotations are not
commutative.1

1Rotation matrices are a tool to represent finite rotation. As well known, the product of matrices is
not commutative, in general.
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Fig. 9.2 Rotations are not
commutative (i.e., their order
is important)

Human beings are comfortable with two-dimensional rotations, and Euler was,
perhaps, no exception when he invented the technique of three elemental rotations,
often referred to as Euler angles. The basic idea is to generate a sequence of four
Cartesian reference systems Si , each one sharing one axis with the preceding system
and another axis with the next one. Therefore, we can go from one system to the next
by means of a two-dimensional rotation about their common axis.2

In vehicle dynamics it is convenient to use the following sequence of reference
systems (Fig. 9.3)

(i0, j0,k0)
ψ−→

k0=k1
(i1, j1,k1)

θ−→
j1=j2

(i2, j2,k2)
φ−→

i2=i3
(i3, j3,k3) (9.1)

to go from the ground-fixed reference system S0, with directions (i0, j0,k0), to the
vehicle-fixed reference system S3, with directions (i3, j3,k3). This vehicle-fixed
reference system has been already introduced in Fig. 1.4, although with a slightly
different notation (no subscripts). When the vehicle is at rest, direction k3 = k is
orthogonal to the road (hence directed like k0) and direction i3 = i is parallel to the
road and pointing forward (hence like i1, Fig. 9.1).

During the vehicle motion, S3 moves accordingly. At any instant of time, the key
step is the definition of the auxiliary direction j1 = j2

j1 = j2 = k0 × i3
|k0 × i3| = k1 × i2

|k1 × i2| (9.2)

often called the line of nodes, which is orthogonal to both k0 = k1 and i2 = i3. This
direction j1 = j2 is the link between the ground-fixed and the vehicle-fixed reference
systems. This way, we have that we can go from S0 to S1 with an elemental rotation

2More precisely, the axis must share the same direction. The origin can be different.
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Fig. 9.3 Definition of yaw, pitch and roll

ψ about k0 = k1, and so on. Any two consecutive reference systems differ by a
two-dimensional rotation, as shown in (9.1).

More precisely, as shown in Fig. 9.3, the first rotation ψ (yaw) is about the third
axis k0 = k1, which S0 and S1 have in common, the second rotation θ (pitch) is
about the second axis j1 = j2, shared by S1 and S2, and the third rotation φ (roll)
is about the first common axis i2 = i3 of S2 and S3. This is why this sequence of
elemental rotations is marked (3,2,1), or yaw, pitch and roll.3 In vehicle dynamics,
the pitch and roll angles are very small.

3Classical Euler angles use the sequence (3,1,3).
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9.3 Angular Velocity

With this sequence of reference systems, the angular velocity of the vehicle body �
is given by

� = φ̇i2(ψ, θ) + θ̇ j1(ψ) + ψ̇k0 (9.3)

This is a simple and intuitive equation, but it has the drawback that the three unit
vectors are not mutually orthogonal (Fig. 9.3). Therefore, our goal is to obtain the
following equation4

� = pi3 + qj3 + rk3 (9.4)

where the vector � is expressed in terms of its components in the vehicle-fixed
reference system S3.5

The expressions of p, q and r can be easily obtained by means of the rotation
matrices⎡
⎣pq

r

⎤
⎦= R1(φ)

⎡
⎣φ̇0

0

⎤
⎦+ R1(φ)R2(θ)

⎡
⎣0

θ̇

0

⎤
⎦+ R1(φ)R2(θ)R3(ψ)

⎡
⎣0

0
ψ̇

⎤
⎦

=
⎡
⎣φ̇0

0

⎤
⎦+ R1(φ)

⎡
⎣0

θ̇

0

⎤
⎦+ R1(φ)R2(θ)

⎡
⎣0

0
ψ̇

⎤
⎦ (9.5)

where, as well known, the rotation matrices for elemental rotations are as follows,
for a generic angle α

– rotation around the first axis

R1(α) =
⎡
⎣1 0 0

0 cosα sinα

0 − sinα cosα

⎤
⎦ (9.6)

– rotation around the second axis

R2(α) =
⎡
⎣cosα 0 − sinα

0 1 0
sinα 0 cosα

⎤
⎦ (9.7)

– rotation around the third axis

R3(α) =
⎡
⎣ cosα sinα 0

− sinα cosα 0
0 0 1

⎤
⎦ (9.8)

4In this chapter the symbol q is a component of �. Therefore, we use the symbol d for the height
of the no-roll center Q (Fig. 9.1).
5The components p, q and r of � cannot be given, in general, as time derivatives of an angle.
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The final result is

p = φ̇ − ψ̇ sin θ

q = θ̇ cosφ + ψ̇ sinφ cos θ

r = ψ̇ cosφ cos θ − θ̇ sinφ

(9.9)

which can be simplified in

p � φ̇ − ψ̇θ

q � θ̇ + ψ̇φ

r � ψ̇

(9.10)

because of the small values of pitch and roll. Therefore, the angular velocity of the
vehicle body can be expressed as

� � (φ̇ − ψ̇θ)i3 + (θ̇ + ψ̇φ)j3 + ψ̇k3 (9.11)

in the vehicle-fixed reference system.
Moreover, if there is no pitch, that is θ = θ̇ = 0, we have a further simplification

p � φ̇

q � ψ̇φ

r � ψ̇

(9.12)

A lot of work for getting such a simple result.
This definition of roll, pitch and yaw is quite general. It only needs the reason-

able assumption that the vehicle body be considered as perfectly rigid. It is worth
remarking that what matters in the definition of roll, pitch and yaw are only the
directions of the axes of the four reference systems Si . Their positions, that is the
positions of their origins Oi , have no relevance at all.

It is useful to obtain the expressions of the unit vectors (i3, j3,k3) in terms of
(i1, j1,k1)

i3 = cos(θ)i1 − sin(θ)k1

j3 = sin(θ) sin(φ)i1 + cos(φ)j1 + cos(θ) sin(φ)k1

k3 = sin(θ) cos(φ)i1 − sin(φ)j1 + cos(θ) cos(φ)k1

(9.13)

which can be simplified into

i3 � i1 − θk1

j3 � j1 + φk1

k3 � θ i1 − φj1 + k1

(9.14)
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9.4 Angular Acceleration

The angular acceleration �̇ is promptly obtained by differentiating (9.4) with respect
to time

�̇ = ṗi3 + q̇j3 + ṙk3 + � × �

= ṗi3 + q̇j3 + ṙk3 (9.15)

where, according to (9.10)

ṗ � φ̈ − ψ̈θ − ψ̇ θ̇

q̇ � θ̈ + ψ̈φ + ψ̇φ̇

ṙ � ψ̈

(9.16)

9.5 Vehicle Lateral Velocity

The vehicle lateral velocity v was introduced in (3.1) in the case of negligible roll
motion. Now we need to extend that definition when the roll motion is taken into
account. This task is not as simple as it may seem. Intuitively, we would like to
obtain an expression of v independent of φ. Therefore, we are looking for a point
which, broadly speaking, follows the vehicle motion, without being subject to roll.
A point that is like G, except that it does not roll. More precisely, we are looking
for the origin O1 of the reference system S1 in Fig. 9.3, that is a reference system
which yaws, but does not pitch and roll.

For simplicity, we assume the tires are perfectly rigid in this chapter.

9.5.1 Track Invariant Points

Roll motion is part of vehicle dynamics. However, it is useful to start with a purely
kinematic analysis to get an idea of the several effects of roll motion. This kinematic
analysis should be seen as a primer for better investigating roll dynamics.

Figure 3.11 shows how to determine the no-roll centers Qi for a swing arm sus-
pension and a double wishbone suspension. The same method is applied in Fig. 3.12
to a MacPherson strut. In all these cases, the vehicle is in its reference configuration
(no roll). When the vehicle rolls, the no-roll centers Qi migrate with respect to the
vehicle body. They can be obtained, as shown in Fig. 9.1, using the same proce-
dure of Fig. 3.11, i.e., as the intersection of the two lines passing through points Aij

and Bij .
However, determining the current position of Qi has little relevance in this con-

text. Much more important are the following definitions.
We define point M1 as the point of the vehicle body that coincides with Q1 in the

vehicle reference configuration (Fig. 9.1). The same idea, applied to the rear axle,

www.cargeek.ir

www.cargeek.ir

http://www.cargeek.ir/
http://www.cargeek.ir/


278 9 Handling with Roll Motion

Fig. 9.4 Roll rotations about
different points and
comparison of the relative
contact patch positions

leads to the definition of M2. These points are called here track invariant points. Let
us investigate their properties.

In Fig. 9.4, the vehicle body is rotated, in turn, by the same roll angle φ about
three different points, namely Mi , T , and B . We see that in all cases the track length
ti is almost constant. However, in general, the two contact patches move sideways
with respect to the point. The only exception is with point Mi , which remains mid-
way between the two contact patches. This is the reason why it has been called track
invariant point.

The property that a roll rotation about the track invariant point Mi does not affect
the positions of the tire contact patches with respect to Mi itself holds true for any
suspension type, as shown in Fig. 9.5.6

However, the vehicle does not care much about which point we applied the roll
rotation. This is demonstrated in Fig. 9.6, where we superimposed the three vehicle
rotations shown in Fig. 9.4. They are almost indistinguishable, suggesting that the
notion of a roll axis about which the vehicle rolls is meaningless. For the vehicle,
all points between, say, T and B are pretty much equivalent.

In general, in addition to roll, there may be some suspension jacking, which
results in a vehicle vertical displacement zi , as discussed in Sect. 3.8.10. Figure 9.7
shows the same axle with and without suspension jacking. The roll angle is the same.
It is evident, particularly when comparing the two cases, as it is done in Fig. 9.7
(bottom), that the combination of roll and suspension jacking is like a rotation about
a point Qz.

6In Fig. 9.5 it is also quite interesting to note the camber variations due to pure roll in each type of
suspension. This topic has been addressed in Sect. 3.8.3.
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Fig. 9.5 Roll rotations about
the track invariant point Mi

for three different suspension
layouts (top to bottom): swing
arm, MacPherson strut,
double wishbone

Fig. 9.6 Comparison of roll
rotations about different
points: they have almost the
same effect on the vehicle

We recall that suspension jacking occurs whenever the lateral forces exerted by
the two tires of the same axle are not equal, which is always the case, indeed. How-
ever, it is a small effect that can be safely neglected, particularly in more sophisti-
cated suspensions, like the double wishbone or the MacPherson strut.

9.5.2 Vehicle Invariant Point (VIP)

Now let us look at both axles together, that is at the vehicle as a whole, as done in
Fig. 9.8. For simplicity, let us assume the front and rear tracks to be equal to each
other, that is t1 = t2, and that they are not affected by roll (no suspension jacking).

Points M1 and M2 have, in general, different heights. Therefore, roll motion
makes the front and rear tracks “slide” a little bit with respect to each other (Fig. 9.8).
We remark that we know the direction i3 about which the vehicle (by definition)
rolls, but we cannot say anything about an elusive axis about which the vehicle
rolls.
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Fig. 9.7 Roll rotations with and without suspension jacking

Fig. 9.8 Roll motion explained without the recourse to any roll axis

We are looking for a point of the vehicle body that, regardless of the roll angle φ,
remains most centered with respect to the four contact patches. Figure 9.8 suggests
that the point that is most insensitive to roll is indeed a point M between M1 and M2.
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Fig. 9.9 Schematic for the
definition of points M

and O1, and hence for the
definition of the lateral
velocity v of the vehicle

Therefore, we define point M as the point of the vehicle body that, in the reference
configuration, coincides with the no-roll center Q. We call M vehicle invariant point
(VIP). Point O1 is the point on the ground always below M , as shown in Fig. 9.9.

The selection of point M as the best suited to represent the vehicle position
purged by the roll motion, is reasonable (we believe), but nonetheless arbitrary.7

However, this is what is commonly done in vehicle dynamics, although often with-
out providing an explicit explanation. We repeat that point M , and hence also O1,
are basically in the middle of the vehicle, even when it rolls. This is the reason that
makes them the best option to monitor the vehicle position.

9.5.3 Lateral Velocity and Acceleration

The vehicle velocity is, by definition, that of the vehicle invariant point M . There-
fore, pretty much like in (3.1)

VM = ui1 + vj1 (9.17)

where u is the forward velocity and v is the lateral velocity. We recall that we
have assumed the tires to be rigid, and hence there is no roll motion due to tire
deformation.

The vehicle acceleration is given by a formula identical to (3.21)

aM = (u̇ − vψ̇)i1 + (v̇ + uψ̇)j1

� (u̇ − vr)i1 + (v̇ + ur)j1 (9.18)

7The use of the center of mass G to represent the vehicle position in Chaps. 3–7 was arbitrary as
well.
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Actually, point M may also have a vertical velocity, due to uneven road or suspen-
sion jacking. Here we assume the road to be perfectly flat and suspension jacking to
be negligible.

Point M inherits almost everything that was obtained for G in Chaps. 3–7, in
the sense that now we have to use M (or O1) to define the vehicle slip angle β ,
trajectory, etc.

9.6 Three-Dimensional Vehicle Dynamics

We have assumed the vehicle sprung mass ms to be a rigid body. If roll motion is
taken into account, it has a three-dimensional dynamics. For simplicity, at least at
the beginning, it is useful to suppose the unsprung mass mn to be negligible (i.e.,
m = ms ).

Like in (3.51), the classical force and torque equations for the dynamics of a
single rigid body are [6]

maG = F

K̇r
G = MG

(9.19)

where m = ms is the total mass of the vehicle, aG is the acceleration of its center
of mass, F is the resultant of all forces applied to the vehicle body, K̇r

G is the rate
of change of the angular momentum of the vehicle body with respect to G = Gs ,
and MG is the global moment (torque) of all forces, again with respect to G.

If the second equation is written with respect to the freshly defined vehicle in-
variant point M , it generalizes into

K̇r
G + MG × maG = K̇r

M + MG × maM = MM (9.20)

9.6.1 Velocity and Acceleration of G

Dynamics cannot get rid of G. We have to compute its velocity and acceleration.
Both points M and G belong to the same rigid body. Therefore, we can use again

the fundamental formula (5.1) to relate the velocity of G to the velocity of M , plus
the roll contribution

VG = VM + � × MG (9.21)

where, by definition

MG = (h − d)k3

� (h − d)(θ i1 − φj1 + k1) (9.22)
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Therefore

VG = ui1 + vj1 − p(h − d)j3 + q(h − d)i3

= ui1 + vj1 − (φ̇ − ψ̇θ)(h − d)j3 + (θ̇ + ψ̇φ)(h − d)i3 (9.23)

where in the last equation we employed the approximate expression (9.11).
We can proceed in a similar way for accelerations, that is using the fundamental

formula (5.4)

aG = aM + �̇ × MG + � × (� × MG) (9.24)

that is

aG = (u̇ − vψ̇)i1 + (v̇ + uψ̇)j1

− ṗ(h − d)j3 + q̇(h − d)i3

+ (h − d)
[−p(pk3 − ri3) + q(rj3 − qk3)

]
(9.25)

which can be rewritten as

aG = (u̇ − vψ̇)i1 + (v̇ + uψ̇)j1

+ (h − d)[−ṗj3 + q̇i3]
+ (h − d)

[
r(pi3 + qj3) − (p2 + q2)k3

]
(9.26)

Each term has a clear physical meaning. The acceleration aG is one of the funda-
mental bricks in the force equation in (9.19).

The acceleration aG can be expressed in S1

aG = (u̇ − vψ̇)i1 + (v̇ + uψ̇)j1

+ (h − d)
[−ṗ(j1 + φk1) + q̇(i1 − θk1)

]
+ (h − d)

{
r
[
p(i1 − θk1) + q(j1 + φk1)

]− (p2 + q2)(θ i1 − φj1 + k1)
}

(9.27)
which can be rearranged as

aG = (u̇ − vψ̇)i1 + (v̇ + uψ̇)j1

+ (h − d)
[
q̇ + rp − (p2 + q2)θ]i1

+ (h − d)
[−ṗ + rq + (p2 + q2)φ]j1

+ (h − d)
[−ṗφ − q̇θ − rpθ + rqφ − (p2 + q2)]k1 (9.28)
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Taking (9.16) into account, and discarding the small terms, we get

aG � (u̇ − vψ̇)i1 + (v̇ + uψ̇)j1

+ (h − d)
[
(θ̈ + ψ̈φ + ψ̇φ̇) + ψ̇(φ̇ − ψ̇θ)

]
i1

+ (h − d)
[−(φ̈ − ψ̈θ − ψ̇ θ̇ ) + ψ̇(θ̇ + ψ̇φ)

]
j1 (9.29)

If also ψ̇ and ψ̈ are small

aG � (u̇ − vψ̇)i1 + (v̇ + uψ̇)j1 + (h − d)[θ̈ i1 − φ̈j1] (9.30)

9.6.2 Rate of Change of the Angular Momentum

It is very convenient to use, as already done in Sect. 9.2, a reference system S3

attached to the vehicle body and with its origin in the center of gravity of the sprung
mass Gs .

As already stated, when the vehicle is at rest, direction k3 of S3 is orthogonal to
the road and direction i3 is parallel to the road pointing forward (like in Fig. 1.4,
where the body-fixed axes do not have the subscript 3, or in Fig. 9.1). Therefore,
in general, S3 is not directed as the principal axes of inertia. Consequently, the
expression of K̇r

G is a little involved

K̇r
G = [Jxṗ − (Jy − Jz)qr − Jxy(q̇ − rp) − Jyz

(
q2 − r2)− Jzx(ṙ − pq)

]
i3

+ [Jyq̇ − (Jz − Jx)rp − Jyz(ṙ − pq) − Jzx

(
r2 − p2)− Jxy(ṗ − qr)

]
j3

+ [Jzṙ − (Jx − Jy)pq − Jzx(ṗ − qr) − Jxy

(
p2 − q2)− Jyz(q̇ − rp)

]
k3

(9.31)

Actually, most vehicles have (Jxy = Jyz) � 0, and hence we can use the simplified
expression

K̇r
G = [Jxṗ − (Jy − Jz)qr − Jzx(ṙ − pq)

]
i3

+ [Jyq̇ − (Jz − Jx)rp − Jzx

(
r2 − p2)]j3

+ [Jzṙ − (Jx − Jy)pq − Jzx(ṗ − qr)
]
k3 (9.32)

This very same quantity can be expressed in S1, if (9.14) is taken into account

K̇r
G = [Jxṗ − (Jy − Jz)qr − Jzx(ṙ − pq)

]
(i1 − θk1)

+ [Jyq̇ − (Jz − Jx)rp − Jzx

(
r2 − p2)](j1 + φk1)

+ [Jzṙ − (Jx − Jy)pq − Jzx(ṗ − qr)
]
(θ i1 − φj1 + k1) (9.33)
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That is, with some further simplifications because θ , φ, p and q are small

K̇r
G = [Jxṗ − (Jy − Jz)qr − Jzx ṙ + Jzṙθ

]
i1

+ [Jyq̇ − (Jz − Jx)rp − Jzxr
2 − Jzṙφ

]
j1

+ [Jzṙ + Jzx

(
ṙθ − r2φ − ṗ + qr

)]
k1 (9.34)

And finally, taking (9.16) into account (cf. (3.52))

K̇r
G = [Jx(φ̈ − ψ̈θ − ψ̇ θ̇) − (Jy − Jz)(θ̇ + ψ̇φ)ψ̇ − Jzxψ̈ + Jzψ̈θ

]
i1

+ [Jy(θ̈ + ψ̈φ + ψ̇φ̇) − (Jz − Jx)ψ̇(φ̇ − ψ̇θ) − Jzxψ̇
2 − Jzψ̈φ

]
j1

+ [Jzψ̈ + Jzx(2ψ̈θ − φ̈ + 2ψ̇ θ̇ )
]
k1 (9.35)

If also ψ̇ and ψ̈ are small (obviously, ψ is not small)

K̇r
G = (Jxφ̈ − Jzxψ̈)i1 + Jyθ̈ j1 + (Jzψ̈ − Jzxφ̈)k1 (9.36)

Of course, all inertia terms Jx , Jxz, etc. are constant because the reference system
S3 is fixed to the vehicle body. We see that the definition of roll, pitch and yaw is
crucial in these equations.

9.6.3 Completing the Torque Equation

Once that aG has been obtained, we can also compute the term MG × maG in the
torque equation (9.20). To keep the analysis fairly simple, we employ the simplified
expressions (9.22) and (9.30)

MG × maG � {[(h − d)(θ i1 − φj1 + k1)
]

× [(u̇ − vψ̇)i1 + (v̇ + uψ̇)j1 + (h − d)(θ̈ i1 − φ̈j1)
]}

(9.37)

which provides

MG × maG � m
{[

(h − d)2φ̈ − (h − d)(v̇ + uψ̇)
]
i1

+ [(h − d)2θ̈ + (h − d)(u̇ − vψ̇)
]
j1

+ (h − d)u̇φk1
}

(9.38)

9.6.4 Equilibrium Equations

We have obtained all inertia terms of the force and torque equations (left hand side
terms). Considering (9.30), (9.36), and (9.38), we get the following explicit (lin-
earized) form of the equilibrium equations (9.19) and (9.20) for a vehicle that can
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roll and pitch

m
[
(u̇ − vr) + (h − d)θ̈

]= max = X

m
[
(v̇ + ur) − (h − d)φ̈

]= may = Y

0 = Z[
Jx + m(h − d)2]φ̈ − Jzx ṙ − m(h − d)(v̇ + ur) = LM[
Jy + m(h − d)2]θ̈ + m(h − d)(u̇ − vr) = MM

Jzṙ − Jzxφ̈ + m(h − d)u̇φ = NM = N

(9.39)

where, according to (9.10), we set r = ψ̇ . It is useful to compare these equations
with (3.64) and (3.65), that is with the equilibrium equations obtained when the
inertial effects of pitch and roll are neglected.

Interestingly enough, the last three equations in (9.39) can be rewritten as

Jxφ̈ − Jzx ṙ − may(h − d) = LM

Jyθ̈ + max(h − d) = MM

Jzṙ − Jzxφ̈ + max(h − d)φ = NM = N

(9.40)

Of course, everything looks like the car rolls about point M , but it is not so.
Actually, the car rolls about the point M as it does with respect to any other of its
points (Fig. 9.6). It is just the fundamental law (9.21) of the kinematics of rigid
bodies. Therefore, we should avoid sentences like “the car rolls about the roll axis”,
simply because they have no physical meaning at all.

9.6.5 Including the Unsprung Mass

If the unsprung mass mn cannot be neglected, Eq. (9.39) become

m(u̇ − vr) + ms(h − d)θ̈ = X

m(v̇ + ur) − ms(h − d)φ̈ = Y

0 = Z[
Jx + ms(h − d)2]φ̈ − J̃zx ṙ − ms(h − d)(v̇ + ur) = LM[
Jy + ms(h − d)2]θ̈ + ms(h − d)(u̇ − vψ̇) = MM

J̃zṙ − Jzxφ̈ + ms(h − d)u̇φ = N

(9.41)

where J̃z and J̃zx take into account both ms and mn.
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9.7 Handling with Roll Motion

The analysis carried out in Chap. 3 can now be extended taking roll and pitch into
account. However, as already stated, we assume here that the tires are rigid, as in
Sect. 3.8.13. Otherwise, the theory would become too involved, and some physical
aspects would not be clear enough.

9.7.1 Equilibrium Equations

The inertia terms of the equilibrium equations have been already obtained in (9.39),
and rewritten in an alternative form in (9.40). Therefore, we have to complete the
equilibrium equations by including the resultant F and the moment MM (right-hand
side terms). Of course, now we have to include the effects of the shock absorbers,
which are sensitive to the roll time rate φ̇.

We call cφ the global damping coefficients with respect to roll, much like kφ is
the global stiffness with respect to roll. More precisely, as in (3.86), we have

kφ = kφ1 + kφ2 and cφ = cφ1 + cφ2 (9.42)

Similarly, according to (8.53), we have the following global stiffness and global
damping coefficient with respect to pitch

kθ = k1a
2
1 + k2a

2
2 and cθ = c1a

2
1 + c2a

2
2 (9.43)

Therefore, the right-hand side terms to be inserted into the equilibrium equations
(9.39) are as follows (cf. (3.64) and (3.65))

X = X1 + X2 − 1

2
ρSCxu

2

Y = Y1 + Y2

Z = Z1 + Za1 + Z2 + Za1 − mg

LM = −kφφ − cφφ̇ + mg(h − d)φ

MM = −kθ θ − cθ θ̇

NM = N = NY + NX = (Y1a1 − Y2a2) + (ΔX1t1 + ΔX2t2)

(9.44)

9.7.2 Load Transfers

Having roll φ(t) and θ(t) as functions of time requires some other equations of the
vehicle model developed in Chap. 3 to be updated. More precisely, we have to take
shock absorbers and inertia terms into account.
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The lateral load transfers (3.104) now become

ΔZ1t1 = Y1q1 + kφ1φ + cφ1 φ̇

ΔZ2t2 = Y2q2 + kφ2φ + cφ2 φ̇
(9.45)

which, if added, provide

ΔZ1t1 + ΔZ2t2 = (kφ1 + kφ2)φ + (cφ1 + cφ2)φ̇ + Y1q1 + Y2q2

= kφφ + cφφ̇ + Yd = kφφ + cφφ̇ + mayd (9.46)

since, as in (3.102), Yd = Y1q1 + Y2q2.
Combining (9.40), (9.44) and (9.46), we obtain

Y(h − d) + mg(h − d)φ = kφφ + cφφ̇ + Jxφ̈ − Jzx ṙ (9.47)

which generalizes (3.117). With a little algebra, we can obtain also

ΔZ1t1 + ΔZ2t2 = mayh + mg(h − d)φ − (Jxφ̈ − Jzx ṙ) (9.48)

which generalizes (3.76).
For the longitudinal load transfer ΔZ we can follow a similar line of reasoning,

thus obtaining

ΔZ = −Xh + Jyθ̈

l
= −maxh + Jyθ̈

l
(9.49)

which generalizes (3.74).
The main difference with respect to the model developed in Chap. 3, and sum-

marized at p. 86, is that load transfers now depend explicitly on the angular acceler-
ations of the vehicle body.

9.7.3 Constitutive (Tire) Equations

Taking explicitly into account the roll and pitch motions does not affect directly the
tire equations. Therefore, the analysis developed in Chap. 3 applies entirely.

9.7.4 Congruence (Kinematic) Equations

The congruence equations listed in Sect. 3.11.3 can be employed even when the
vehicle model has the roll and pitch degrees of freedom. Actually, according to
Fig. 9.8, the lateral velocities of the front and rear axles should be, respectively

v1 = v + ra1 + (d − q1)φ̇ and v2 = v − ra2 + (d − q2)φ̇ (9.50)
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that is they include small contributions due to the different heights of the vehicle
invariant point M and the two track invariant points M1 and M2. However, the ad-
ditional terms are really very small, and hence can be neglected.

9.8 Steady-State and Transient Analysis

Obviously, including the roll and pitch motions into the vehicle model has very little,
if any, influence on the vehicle steady-state behavior. We should not forget that the
steady-state roll angle was part of the analyses carried out in Chaps. 3–7. On the
other hand, the transient behavior, in particular when entering or exiting a curve,
can be rather different.

9.9 Summary

The vehicle orientation has been defined by means of the yaw-pitch-roll elemental
rotations. Then, to define the vehicle position, a careful analysis of what happens
when the vehicle rolls has been performed. The key result is the definition of the
Vehicle Invariant Point (VIP) as the best option for monitoring the vehicle position,
and also for defining the lateral velocity and acceleration.

VIP allows for a simple and systematic analysis of the vehicle three-dimensional
dynamics. Among other things, it has been shown that the well known roll-axis, as
the axis about which the vehicle rolls, is nonsense.

9.10 List of Some Relevant Concepts

p. 273 finite rotations are not commutative;
p. 273 yaw, pitch, and roll are the three elemental rotations commonly and conve-

niently employed in vehicles;
p. 277 track invariant points belong to the vehicle body;
p. 280 vehicle invariant point (VIP) belongs to the vehicle body and it is the point

best suited to represent the vehicle position, lateral velocity, and lateral accel-
eration;

p. 280 roll motion is better explained without recourse to the roll axis;
p. 288 load transfers depend also on angular accelerations.
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Chapter 10
Tire Models

The global mechanical behavior of the wheel with tire has been addressed in
Chap. 2. Basically, we have first found a way to describe the kinematics of a wheel
with tire. This effort has led to the definition of the tire slips, as quantities that mea-
sure how far a tire is from pure rolling conditions. Then, the forces and couples that
a tire receives from the road have been defined. The final step has been to investigate
experimentally the link between these kinematic parameters and forces/couples.
That was about enough for the chapters dealing with the dynamical behavior of
the whole vehicle.

In Chap. 2 no attempt was made to analyze what happens in the contact patch.
That is, how the forces and couples are built by the elementary actions that arise at
each point of the contact patch. This kind of analysis, however, is quite relevant for
a real comprehension of the subtleties of vehicle set-up.

In this chapter, what happens in the contact patch will be investigated by means
of the so-called brush model. Great care will be devoted to clearly stating the as-
sumptions on which this model is based. Moreover, the investigation will also cover
the transient tire behavior. The final results are really interesting and enlightening.

10.1 Brush Model Definition

The brush model is perhaps the simplest physical tire model, yet it is quite signifi-
cant and interesting. It is a tool to analyze qualitatively what goes on in the contact
patch and to understand why the global mechanical behavior of a wheel with tire is,
indeed, like in Figs. 2.15–2.28. Due to its simplicity, the brush model is not always
able to provide quantitative results. However, it is of great help in grasping some of
the fundamental aspects of tire mechanics.

The Magic Formula provides curves that fit fairly well the experimental results,
while the brush model attempts to describe the complex interaction between the tire
and the road and how forces are generated. They are complementary approaches.

Basically, in the brush model, a belt equipped with infinitely many flexible bris-
tles (the thread) is wrapped around a cylindrical rigid body (the rim), which moves
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Fig. 10.1 Schematic of the
brush model

on a flat surface (the roadway). In a well defined area (the contact patch), the tips of
the bristles touch the ground, thus exchanging with the road normal pressures p and
tangential stresses t, provided the bristles also have a horizontal deflection e. Each
bristle is undistorted (e = 0) when it enters the contact patch. A schematic of the
brush model is shown in Fig. 10.1.

The brush model, as any mathematical model, relies on very many assumptions,
more or less realistic. An attempt is made to clearly establish all of them, so that the
impact of possible improvements can be better appreciated.

For generality, the model is formulated for transient conditions.

10.1.1 Roadway and Rim

The brush model, like the tire, is something that connects the rim to the road. The
roadway is assumed to be perfectly flat, like a geometric plane. The rim is modeled
like a non-rolling cylindrical rigid body moving on the road, carrying on its outer
surface a belt to simulate the rolling of the wheel. The belt slides on the rigid body
(to simulate rolling) and is equipped with infinitely many flexible bristles (like a
brush) which touch the road in the contact patch.

10.1.2 Shape of the Contact Patch

As shown in Fig. 10.2, the contact patch P is assumed to be a convex, simply
connected region. Therefore, it is quite different from a real contact patch, like the
one in Fig. 2.5 at p. 14, which usually has lugs and voids.

It is useful to define a reference system Ŝ = (x̂, ŷ, ẑ;D), with directions (i, j,k)

and origin at point D. Usually D is the center of the contact patch, as in Fig. 10.2.
Directions (i, j,k) resemble those of Fig. 2.2, in the sense that k is perpendicular to
the road and i is the direction of the wheel pure rolling.

More precisely, the contact patch is defined as the region between the leading
edge x̂ = x̂0(ŷ) and the trailing edge x̂ = −x̂0(ŷ), that is

P = {(x̂, ŷ) : x̂ ∈ [−x̂0(ŷ), x̂0(ŷ)
]
, ŷ ∈ [−b, b]} (10.1)
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Fig. 10.2 Possible shapes of the contact patch

It is assumed for simplicity that the shape and size of the contact patch are not
affected by the operating conditions, including the camber angle γ . Of course, this
is not true in real tires.

For mathematical convenience, the contact patch is assumed here to be either a
rectangle, centered at D, of length 2a and width 2b (Fig. 10.2(left)), or an ellipse,
again with axes of length 2a and 2b (Fig. 10.2(right)). In the first case we have
x̂0 = a, whereas in the second case

x̂0(ŷ) =
√

a2

(
1 − ŷ2

b2

)
(10.2)

Typical values for a and b are in the range 0.04–0.08 m. The rectangular shape is not
a bad approximation of the contact patch of car tires (Fig. 2.5), while the elliptical
one is better for motorcycle tires (Fig. 10.5).

10.1.3 Force-Couple Resultant

Exactly like in (2.15), the tangential stresses t(x̂, ŷ, t) exerted by the road on the tire
at each point of the contact patch yield a tangential force Ft

Ft (t) = Fx i + Fyj =
∫ b

−b

dŷ

∫ x̂0(ŷ)

−x̂0(ŷ)

t(x̂, ŷ, t)dx̂ (10.3)

and a vertical moment MD
z with respect to point D

MD
z (t)k =

∫ b

−b

dŷ

∫ x̂0(ŷ)

−x̂0(ŷ)

(x̂i + ŷj) × t(x̂, ŷ, t)dx̂ (10.4)

All inertial effects, of any nature, are neglected.
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Fig. 10.3 Model for the
carcass compliance

10.1.4 Position of the Contact Patch

Let C be the position of D under pure rolling steady-state conditions, that is Fx =
Fy = Mz = 0. Owing to the geometrical effect of camber, point C may not coincide
with O , as shown in Eq. (2.33) and in Fig. 2.11.

Under general operating conditions, points D and C may have different positions
on the road, mainly due to the elastic compliance of the carcass. Therefore, as also
shown in Fig. 10.3

CD = q(t) = qx(t)i + qy(t)j (10.5)

and, for any other point P in the contact patch

CP = CD + DP = CD + x̂i + ŷj = (x̂ + qx)i + (ŷ + qy)j (10.6)

Differentiating (10.5) provides the velocity Vd of point D

Vd − Vc = q̇ = q̇x i + q̇yj + ωzk × q (10.7)

However, as discussed at p. 33, in most cases ωz is very small and hence

q̇ ≈ q̇x i + q̇yj (10.8)

To approximately model the lateral and longitudinal compliance of the carcass,
it has been assumed that the contact patch (with its reference system Ŝ) can have
small rigid displacements qx and qy , without changing its orientation. A linear rela-
tionship between Ft and q is the simplest option

Ft = Wq (10.9)

that is

Fx = wxqx(t) and Fy = wyqy(t) (10.10)
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if

W =
[
wx 0
0 wy

]
(10.11)

with constant stiffnesses wx and wy . More general symmetric matrices are possible.
The displacements qx and qy are usually quite small (i.e., |qx |, |qy | � a) and

hence they can be neglected with respect to some phenomena, as will be discussed.
More advanced tire models may also include small rigid rotations of the contact

patch [9], or employ the stretched string approach to model the carcass flexibility [1,
6, 8].

10.1.5 Pressure Distribution

Figures 10.4 and 10.5 show a typical pressure distribution as measured in a real
motionless tire. The average ground pressure in the tire contact patch, considered as
a single region, is not much higher than the tire inflation pressure. Of course there
are high peaks near the tread edges.

A very simple pressure distribution p(x̂, ŷ) on the contact patch P , which
roughly mimics the experimental results, may be parabolic along x̂

p = p(x̂, ŷ) = p0(ŷ)
(x̂0(ŷ) − x̂)(x̂0(ŷ) + x̂)

x̂0(ŷ)2
(10.12)

where p0(ŷ) = p(0, ŷ) is the pressure peak value. The corresponding vertical load
is given by

Fz =
∫ b

−b

dŷ

∫ x̂0(ŷ)

−x̂0(ŷ)

p(x̂, ŷ)dx̂ (10.13)

Other pressure distributions may be used as well in the brush model, including non-
symmetric ones like in Fig. 2.10 to include the rolling resistance.

On a rectangular contact patch x̂0(ŷ) = a. Equation (10.12), with uniform p0,
becomes simply

p = p(x̂, ŷ) = p0

[
1 −
(

x̂

a

)2]
(10.14)

and hence

Fz =
∫ b

−b

dŷ

∫ a

−a

p(x̂, ŷ)dx̂ = 2

3
p02a2b (10.15)

which yields

p0 = 3

2

Fz

(2a)(2b)
(10.16)
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Fig. 10.4 Experimental
results: pressure distribution
for a motionless motorcycle
tire [4]

On an elliptical contact patch (10.12) and (10.2) provide

p = p(x̂, ŷ) = p0

[
1 − x̂2

a2(1 − y2

b2 )

]
(10.17)

again with the same peak value p0 for any y.

Fig. 10.5 Experimental results: contact patch and envelope of pressure distribution for a motion-
less motorcycle tire [4]
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10.1.6 Friction

Let Vμ = |Vμ| be the magnitude of the sliding velocity Vμ, that is the velocity of
the bristle tip with respect to the road, and μ the local friction coefficient.1 Fairly
general rules for adhesion and sliding between the bristle tip and the road are as
follows

|t| < μp ⇐⇒ Vμ = 0 (adhesion) (10.18)

t = −μp
Vμ

Vμ

⇐⇒ Vμ �= 0 (sliding) (10.19)

Equation (10.19) simply states that, at sliding, t and Vμ have opposite direction and
|t| = μp.

If thermal effects are neglected, μ may reasonably depend on the local value of
the pressure p and of Vμ

μ = μ(p,Vμ) (10.20)

It is common practice to call μ0 = μ(p,0) the coefficient of static friction and μ1 =
μ(p,Vμ �= 0) the coefficient of kinetic friction. In the present analysis, to keep it
simple, we assume μ0 and μ1 to be constant all over the contact patch

μ0 = (1 + χ)μ1, with χ > 0 (10.21)

thus discarding all dependencies on p and Vμ, except the switch from μ0 to μ1.
Typically, μ0 ≈ 1.2μ1, that is χ ≈ 0.2. More advanced models can be found, e.g.,
in [2, 3, 9].

10.1.7 Constitutive Relationship

The brush model owes its name to this section. It is indeed the constitutive relation
that makes it possible to think of this model as having a moving belt equipped with
infinitely many independent flexible bristles (Fig. 10.1).

Each massless bristle, while traveling in the contact patch, may have a horizontal
deflection e(x̂, ŷ, t) = ex i + eyj. The key point is to assume that this deflection
e(x̂, ŷ) does depend solely on the tangential stress t(x̂, ŷ, t) = tx i + tyj at the very
same point in the contact patch. In other words, each bristle behaves independently
of the others: the constitutive relation is purely local. It is quite a strong assumption.
Not very realistic, but terribly useful to get a simple model.

Actually, a truly simple model requires three further assumptions. The constitu-
tive relation need to be linear, isotropic and homogeneous, that is simply

t(x̂, ŷ, t) = ke(x̂, ŷ, t) (10.22)

1Not to be confused with the global friction coefficients (2.76) and (2.78).
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where k is the bristle stiffness. Usually, k ranges between 30 and 60 MN/m3.
A linear but anisotropic and non homogeneous constitutive relation would be like

t(x̂, ŷ, t) =
[
kxx(x̂, ŷ) kxy(x̂, ŷ)

kyx(x̂, ŷ) kyy(x̂, ŷ)

]
e(x̂, ŷ, t) (10.23)

with kxy = kyx and often equal to zero.
It is worth noting that in (10.22) (and also in (10.23)) all quantities, including

t and e, are associated with the coordinates of the root, not of the tip of the bris-
tle. Much like in the classical theory of linear elasticity, we are assuming that the
problem can be safely formulated with reference to the undeformed state. This is
reasonable provided the deflections e are small, that is |e| � a. In other words, the
root and the tip of each bristle are almost coincident.

10.1.8 Kinematics

There are two fundamental global motions in the kinematics of a real wheel with
tire:

(1) the continuous flow of undeformed rubber tread in the contact patch;
(2) the motion of the contact patch with respect to the road.

For an in-depth discussion of these topics, along with the definition of the transla-
tional slip σ and of the spin slip ϕ, we refer to Sect. 2.7.

The first motion is modeled by assuming that the belt (i.e., the root of each bristle)
moves with respect to the rim, and hence to the contact patch, with a velocity equal
to minus the rolling velocity −Vr = −Vr i (defined in (2.43)). This flow is always
along parallel lines directed like −i. In the brush model the rolling velocity may
change in time (Vr = Vr(t)), but it must be the same at all points of the contact
patch (it is a global parameter). This property makes it possible to define a sort of
global rolling distance s(t)

s(t) =
∫ t

0
Vr(t)dt that is

ds

dt
= Vr(t) (10.24)

If Vr > 0, the function s(t) is one-to-one. It will be shown that, in some cases, the
use of s as the independent variable is more convenient than the use of t .

As already stated, the forefront border of the contact patch is called the leading
edge. It is very important to realize that it is through the leading edge that unde-
formed rubber tread enters the contact patch.

The second motion is modeled by considering the contact patch P as a rigid
region that moves with respect to the road with angular velocity equal to the slip
spin velocity Ωszk (defined in (2.50)) and whose center D has velocity Vd given by
(cf. (10.7) and (10.8))

Vd = Vc + q̇ = Vc + q̇x i + q̇yj + ωzk × q (10.25)
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where Vc, that is the velocity of point C, is set equal to the speed of travel, defined
in (2.48) for a real wheel. From (2.49) and (2.58) it follows that Vc = Vr + Vs =
Vr + Vrσ , and hence

Vd = Vc + q̇ = Vr + Vrσ + q̇ (10.26)

The generic point P = (x̂, ŷ) of P has therefore a velocity equal to2

VP = Vd + Ωszk × CP = Vc + q̇ + Ωszk × (x̂i + ŷj) (10.27)

The two global motions affect the local kinematics, that is the motion of each
single bristle. The root of the bristle (momentarily) at point (x̂, ŷ) = (x̂b(t), ŷ) of
the contact patch has a velocity Vt with respect to the ground given by the superim-
position of the two global motions

Vt (x̂, ŷ, t) = VP (x̂, ŷ, t) − Vr (t)

= (Vc − Vr ) + Ωszk × (x̂i + ŷj) + q̇

= Vs + Ωsz(x̂j − ŷi) + q̇

= Vr

[
σ − ϕ(x̂j − ŷi)

]+ q̇ (10.28)

The local velocity Vt of each bristle root may be called the skating velocity.3 It is
usually quite small, and everywhere zero in pure rolling conditions.

Equation (10.28) suggests to define the skating slip ε

ε = Vt

Vr

= σ − ϕ(x̂j − ŷi) + q̇
Vr

= ρ − ϕ(x̂j − ŷi) = ε(x̂, ŷ, t) (10.29)

and also the transient translational slip

ρ(t) = σ (t) + q̇(t)

Vr(t)
(10.30)

The translational slip σ and the spin slip ϕ were defined also for real wheels with
tires, whereas the local skating slip ε and the global transient translational slip ρ are
meaningful in the brush model only, as they involve q̇.

To study the possible sliding of each bristle tip on the ground, let us consider
the bristle root (momentarily) with coordinates (x̂, ŷ) = (x̂b(t), ŷ). According to
(10.28), its root moves with respect to the road with a skating velocity Vt (x̂, ŷ, t).
At the same time, its tip has, by definition, a velocity ė = de/dt with respect to

2In the brush model there is slip spin velocity Ωsz only within the contact patch, as if it were
entirely due to the camber angle.
3The use of the practical slip κ would not have provided an equally neat formula.
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the root.4 However, exactly like in fluid dynamics, it is more convenient to take a
so-called Eulerian approach,5 which provides

ė = de(x̂b(t), ŷ, t)

dt
= ∂e

∂x̂

dx̂b

dt
+ ∂e

∂t
= −e,x̂Vr + e,t (10.31)

since dŷ/dt = 0 and where, for brevity, e,x̂ = ∂e/∂x̂ and e,t = ∂e/∂t . Therefore,
the possible sliding velocity Vμ of a bristle tip with respect to the road is given by

Vμ(x̂, ŷ, t) = Vt + ė

= Vrε − Vre,x̂ + e,t

= Vr

[
σ − ϕ(x̂j − ŷi)

]+ q̇ − Vre,x̂ + e,t

= Vr

[
ρ − ϕ(x̂j − ŷi)

]− Vre,x̂ + e,t (10.32)

Of course, there is adhesion between the tip and the road if Vμ = 0, like in (10.18).

10.2 General Governing Equations of the Brush Model

The brush model has been completely defined in the previous section. A schematic
was shown in Fig. 10.1. Its distinguishing feature is that each bristle behaves inde-
pendently of the others.

The fundamental governing equations for the transient behavior are to be ob-
tained by combining all the relationships given in the brush model definition.

Whenever there is adhesion, as defined in (10.18), between the tip and the road,
the deflection e grows with the following time rate, according to (10.32) with
Vμ = 0

ė = −Vt ⇐⇒ |t = ke| < μ0p (adhesion) (10.33)

As soon as the friction limit is reached (|t| = μ0p), the bristle tip starts sliding with
velocity Vμ �= 0 and the governing equation changes abruptly into (10.19), which,
owing to (10.32) and (10.22), is equivalent to

ke = −μ1p
Vt + ė
|Vt + ė| ⇐⇒ |Vt + ė| �= 0 (sliding) (10.34)

This vectorial differential equation states that, whenever there is sliding, we have
k|e| = μ1p and the vectors t = ke and Vμ have the same, unknown, direction.

4The total time derivative is evaluated within Ŝ, that is as if i and j were fixed.
5As reported in [11, p. 4], this approach is actually due to d’Alembert.
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According to (10.31) and (10.32), Eqs. (10.33) and (10.34) can be recast as fol-
lows, where ε = ρ − ϕ(x̂j − ŷi)

e,x̂ − e,t
Vr

= ε = σ (t) + q̇
Vr

− ϕ(t)(x̂j − ŷi) ⇐⇒ k|e| < μ0p (adhesion)

(10.35)

ke = −μ1p
ε − e,x̂ + e,t /Vr

|ε − e,x̂ + e,t /Vr | ⇐⇒ |ε − e,x̂ + e,t /Vr | �= 0 (sliding)

(10.36)

with given boundary conditions (like e(x̂0(ŷ), ŷ, t) = 0 at the leading edge) and ini-
tial conditions (like e(x̂,ŷ,0) = e0(x̂, ŷ)). This is a two-state system, in the sense
that only one partial differential equation applies at each point of the contact patch:
we can either have adhesion or sliding, but not both (or none). By definition, ad-
hesion means |Vμ| = 0 and the differential equation (10.36) of sliding is indeed
meaningless.

A closer look shows that we have a different two-state system for any value of ŷ.
Indeed, the spatial derivatives in (10.35) and (10.36) are only with respect to x̂, that
is in the direction i of the rolling velocity Vr i. The rubber flows along parallel lines
that do not interact (in this model!).

However, the problem needs an additional vectorial equation since q̇ is unknown,
and so is ρ(t). Differentiating (10.9) with respect to time and taking (10.30) into
account provides

Ḟt = Wq̇ = W(ρ − σ )Vr (10.37)

Also useful is to insert the constitutive relationship (10.22) into (10.3) and then
differentiate with respect to time

Ḟt = k

∫ b

−b

dŷ

∫ x̂0(ŷ)

−x̂0(ŷ)

e,tdx̂ (10.38)

Combining (10.37) and (10.38) yields the missing governing equation

k

∫ b

−b

dŷ

∫ x̂0(ŷ)

−x̂0(ŷ)

e,tdx̂ = Wq̇ = W(ρ − σ )Vr (10.39)

Summing up, the behavior of the transient brush model, that is the functions
e(x̂, ŷ, t) and ρ(t), for given boundary conditions e(x̂0(ŷ), ŷ, t) = 0 at the leading
edge and initial conditions e(x̂,ŷ,0) = e0(x̂, ŷ) and ρ(0) = ρ0, is completely de-
fined by the governing equations (10.35) or (10.36), and (10.39).

Actually, a somehow more compact formulation of the very same problem can
be obtained employing, instead of time t , the rolling distance s, defined in (10.24).
Since there is a one-to-one correspondence between t and s, that is t = t (s), and
all time derivatives in the brush model are divided by Vr(t) = ds/dt , the general
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governing equations can be reformulated in terms of e(x̂, ŷ, s) in the following way

e,x̂ − e,s = ε ⇐⇒ k|e| < μ0p (adhesion) (10.40)

ke = −μ1p
ε − e,x̂ + e,s
|ε − e,x̂ + e,s | ⇐⇒ |ε − e,x̂ + e,s | �= 0 (sliding) (10.41)

along with

k

∫ b

−b

dŷ

∫ x̂0(ŷ)

−x̂0(ŷ)

e,sdx̂ = Wq′ = W(ρ − σ ) (10.42)

where e,s = ∂e/∂s and q′ = dq/ds. This formulation shows that the rolling velocity
Vr(t) does not have any influence on the behavior of the brush model with respect to
the rolling distance s. The main reason is that all inertial effects have been neglected,
as in (2.22).

Either in terms of t or s, this is quite a difficult mathematical problem if tackled
in its full generality. Fortunately, under suitable simplifying assumptions it becomes
much simpler. However, it should be appreciated that the transient behavior of a real
wheel with tire (cf. (2.18)) is a rather difficult matter.

10.2.1 Data for Numerical Examples

Almost all figures from here onwards in this chapter are obtained with the following
numerical values:

a = 7.5 cm, b = 5.6 cm, rr = 25 cm

μ0 = 1, χ = 0.2, p0 = 0.3 MPa

k = 30 MN/m3, wx = 500 kN/m, wy = 125 kN/m

(10.43)

10.3 Brush Model Steady-State Behavior

The main, and most common, simplification is assuming the model to be in steady-
state conditions, that is that

• e,t = 0, and hence e = e(x̂, ŷ);
• q̇ = 0, which means that ρ = σ is known.

The problem is substantially simpler, since there are only ordinary differential equa-
tions, and the only unknown function is e(x̂, ŷ).

More in detail, the skating slip (10.29) becomes

ε(x̂, ŷ) = Vt (x̂, ŷ, t)

Vr(t)
= σ − ϕ(x̂j − ŷi) (10.44)
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with constant σ and ϕ. Therefore, the skating slip ε is a given quantity, a known
input to the model. It is worth noting that some quantities may be time dependent,
like Vt and Vr .

According to (10.31), the total time derivative of the bristle tip is given by

ė
Vr(t)

= −e′(x̂, ŷ) (10.45)

where e′ = e,x̂ to stress that it is a total derivative here.

10.3.1 Governing Equations

According to (10.44) and (10.45), in the steady-state case the governing equations
(10.35) and (10.36) of the brush model become (cf. [1, p. 761] and [8, p. 83])

e′ = ε ⇐⇒ k|e| < μ0p (adhesion) (10.46)

ke = −μ1p
ε − e′

|ε − e′| ⇐⇒ ∣∣ε − e′∣∣ �= 0 (sliding) (10.47)

These first-order differential equations in the unknown function e(x̂, ŷ), along
with the boundary conditions at the leading edge, completely describe the behav-
ior of the brush model.6 Indeed, in this case the other equation (10.39) simply states
ρ − σ = 0.

As already remarked, this is a two-state system, since at each point there is,
obviously, either adhesion or sliding. To distinguish between the solutions in the
adhesion and in the sliding regions, we will use the symbols ea and es , respectively.

10.3.2 Adhesion and Sliding Zones

Each bristle, which behaves independently of the others, is undeformed when it
enters the contact patch through the leading edge x̂0(ŷ). Its tip sticks to the ground
and, due to the skating velocity Vt between the bristle root and the road, a deflection
e immediately starts to build up, along with a tangential stress t = ke.

To better understand the roles played by adhesion and sliding, we refer to
Fig. 10.6, where a fairly unusual pressure pattern has been depicted.

6More convenient governing equations for the sliding state are given in (10.52) and (10.53).
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Fig. 10.6 Adhesion and sliding zones in the case ε = σ = const

10.3.2.1 Adhesion

At first there is adhesion, and Eq. (10.46) applies with initial condition ea = 0 at
x̂0 (point A in Fig. 10.6). A simple integration provides the behavior of the bristle
deflection ea in the adhesion zone

ea(x̂, ŷ) =
∫ x̂

x̂0

e′dx̂ =
∫ x̂

x̂0

εdx̂ =
∫ x̂

x̂0

[
σ − ϕ(x̂j − ŷi)

]
dx̂

= −σ (x̂0 − x̂) + ϕ

[
(x̂0 − x̂)(x̂0 + x̂)

2
j − ŷ(x̂0 − x̂)i

]
(10.48)

It is worth noting that this expression is linear with respect to σ and ϕ. Moreover, it
is not affected by the pressure distribution.

The magnitude of ea is given by

|ea| = √
ea · ea = (x̂0 − x̂)

√
(σx + ϕŷ)2 +

(
σy − ϕ

x̂0 + x̂

2

)2

(10.49)

Expressions (10.48) and (10.49) simplify considerably if ϕ = 0, that is ε =
σ = const.

Line A–B in Fig. 10.6 shows an example of linear growth (ε = σ ). According
to (10.46), the adhesion state is maintained as far as k|ea| < μ0p, that is up to
x̂s = x̂s(σ , ϕ, ŷ) (point B in Fig. 10.6) where

|t| = k
∣∣ea(x̂s , ŷ)

∣∣= μ0p(x̂s, ŷ) (10.50)
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In the proposed model, as soon as the static friction limit is reached at point
x̂ = x̂s , the following sudden change in the deflection (massless bristle) occurs

es(x̂s , ŷ) = μ1

μ0
ea(x̂s , ŷ) (10.51)

Therefore, at the transition from adhesion to sliding the deflection preserves its di-
rection, but with a sudden reduction in magnitude (line B–C in Fig. 10.6).

10.3.2.2 Sliding

The sliding state starts with es(x̂s , ŷ) as initial condition and evolves according to
(10.47). Apparently, (10.47) is a system of two nonlinear first-order ordinary differ-
ential equations. However, it can be recast in a simpler, more convenient form

es · es =
(

μ1p

k

)2

(
es × (ε − e′

s

)) · k = 0

(10.52)

that is, using components

e2
x + e2

y =
(

μ1p

k

)2

ex

(
εy − e′

y

)= ey

(
εx − e′

x

) (10.53)

which is a differential-algebraic system. Indeed, the sliding state requires

• the magnitude of the tangential stress t to be equal to the kinetic coefficient of
friction times the pressure (curved line C–D in Fig. 10.6);

• the direction of t (and hence of e) to be the same as that of the sliding veloc-
ity Vμ = Vr(ε − e′

s).

These are precisely the two conditions stated by (10.52) or (10.53).
Although, in general, the exact solution cannot be obtained by analytical meth-

ods, some features of the solution are readily available.
Let s be a unit vector directed like the sliding velocity Vμ, that is such that

Vμ = |Vμ|s (10.54)

or, equivalently, t = −|t|s and e = −|e|s.
As well known, for any unit vector we have s · s′ = 0, where s′ = ∂s/∂x̂. There-

fore, m = s′/|s′| is a unit vector orthogonal to s (and hence to Vμ), and the skating
slip ε can be expressed as

ε = (ε · s)s + (ε · m)m (10.55)
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Moreover, according to (10.47)

es = −μ1p

k
s =⇒ e′

s = −μ1p
′

k
s − μ1p

k
s′ (10.56)

Combining (10.54), (10.55) and (10.56) we get

Vμ

Vr

= |Vμ|s
Vr

= ε − e′
s

= (ε · s)s + (ε · m)m + μ1p
′

k
s + μ1p

k

∣∣s′∣∣m
=
(

ε · s + μ1p
′

k

)
s (10.57)

which shows which terms actually contribute to the sliding velocity.
In most cases, the sliding regime is preserved up to the trailing edge, that is till

the end of the contact patch. However, it is interesting to find the conditions that can
lead the bristle to switch back to adhesion (point D in Fig. 10.6). From (10.57) it
immediately arises that

|Vμ| = 0 ⇐⇒ ε · s + μ1p
′

k
= 0 (10.58)

Since s depends on the solution es of the algebraic-differential system of equations
(10.53), this condition has to be checked at each numerical integration step.

The governing equation (10.47) of the sliding state deserves some further discus-
sion. The “annoying” term (ε − e′

s)/|ε − e′
s | is simply equal to ε/|ε| if es and ε are

parallel vectors. This observation may suggest the following approximate approach
to (10.47)

kef = −μ1p
ε − e′

f

|ε|
kẽs = −μ1p

ef

|ef |
(10.59)

First we solve two separate linear differential equations (not a system) for the two
components of the “fictitious” deflection ef . Then, we obtain the approximate de-
flection ẽs in the sliding region as a vector with magnitude μ1p/k and directed
like ef . We remind that linear first-order differential equations can always be solved
by integration (see, e.g., [12, p. 410]).7 In many cases ẽs is a very good approxima-
tion of es .

7The solution of y′ + f (x)y = g(x) is

y(x) = exp

(
−
∫ x

f (t)dt

)[∫ x

exp

(∫ z

f (t)dt

)
g(z)dz + C

]
.
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An even simpler, less accurate, but often employed idea is to assume that the
governing equation in the sliding state is just an algebraic equation

kês = −μ1p
ε

|ε| (10.60)

Therefore, we allow a sudden discontinuity in the direction of the deflection at the
transition from adhesion to sliding. This is not correct, but very appealing because
of its simplicity. Of course, as already mentioned, (10.60) is exact if es and ε happen
to be parallel throughout the whole sliding region, that is if ϕ = 0 and hence ε = σ .

10.3.3 Force-Couple Resultant

The solution of the steady-state brush model shows whether there is adhesion or
sliding at each point of the contact patch P and provides the corresponding bristle
deflection ea(x̂, ŷ) or es(x̂, ŷ). Therefore, the tangential stress t at each point of P
is

t(x̂, ŷ) =
{

ta = kea(x̂, ŷ) (adhesion)

ts = kes(x̂, ŷ) (sliding)
(10.61)

Like in (2.15) and (10.3), the tangential force Ft = Fx i+Fyj that the road applies
on the tire model is given by the integral of t over the contact patch

Ft (σ , ϕ) =
∫ b

−b

dŷ

∫ x̂0(ŷ)

−x̂0(ŷ)

t(x̂, ŷ)dx̂ (10.62)

which is a function, among other things, of the global slips σ and ϕ.8

It may be convenient to use the nondimensional or normalized tangential force
Fn

t and its components [7]

Fn
t = Fn

x i + Fn
y j = Ft

Fz

= Fx i + Fyj
Fz

(10.63)

Of course, under whichever operating condition of the brush model, we always have
|Fn

t | < μ0. It is quite interesting to find the combination of σx , σy and ϕ which
provides the highest possible value. Equations (2.76) and (2.78) address a similar
issue in an experimental context.

The overall moment of the tangential stresses with respect to point D is given by

MD
z (σ , ϕ)k =

∫ b

−b

dŷ

∫ x̂0(ŷ)

−x̂0(ŷ)

(x̂i + ŷj) × t(x̂, ŷ)dx̂ (10.64)

8Since the tangential force is constant in time, it is possible to exploit its dependence on the given
slips.
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However, in general, we are more interested in the vertical moment (usually
called self-aligning torque) Mz, that is the moment with respect to the origin O

of S. According to (10.5) and (10.10), we have to take into account the effects of
the carcass compliance and of camber (Fig. 2.11) to locate D with respect to O

Mz(γ,σ , ϕ) = MD
z − Fx

(
cr(γ ) + qy

)+ Fyqx

= MD
z − Fx

(
cr(γ ) + Fy

wy

)
+ Fy

Fx

wx

= MD
z − Fxcr(γ ) + FxFy

wy − wx

wxwy

(10.65)

To gain insights into the steady-state brush model behavior, we will address some
particular cases. Some of them can be solved analytically, while others require a
numerical approach.

The shape of the contact patch is taken to be rectangular or elliptical, although it
would not be much more difficult to deal with more realistic shapes, like the one in
the center of Fig. 10.2.

Figure 10.7, obtained with the data listed in (10.43), shows the tangential stress
pattern in rectangular contact patches, along with the adhesion and sliding regions,
for four combinations of (σx, σy,ϕ). The corresponding values of the normalized
longitudinal and lateral forces are also reported. As typical in car tires, the value of
ϕ is small.

Similarly, in Fig. 10.8, four cases for elliptical contact patches are shown. The
spin slip is quite high, as typical in motorcycle tires.

10.4 Adhesion Everywhere (Linear Behavior)

If the magnitude of the skating slip ε is everywhere very small, then there is ad-
hesion almost everywhere on the contact patch. More precisely, small skating slips
means

|ε| � μ0p0

2ak
(10.66)

that is |ε| < 0.03 on a dry paved road.
According to (10.48) and (10.62), the tangential force is

Ft (σ , ϕ) = Fx i + Fyj

=
∫ b

−b

dŷ

∫ x̂0(ŷ)

−x̂0(ŷ)

kea(x̂, ŷ)dx̂
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Fig. 10.7 Examples of tangential stress distributions in rectangular contact patches. Also shown
the line separating the adhesion region (top) and the sliding region (bottom). Values of ϕ are in m−1

=
∫ b

−b

dŷ

∫ x̂0

−x̂0

k

(
−σ (x̂0 − x̂) + ϕ

[
(x̂0 − x̂)(x̂0 + x̂)

2
j − ŷ(x̂0 − x̂)i

])
dx̂

= −Cσ σ + Cϕϕj

= −Cσ σx i − (Cσ σy − Cϕϕ)j (10.67)
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Fig. 10.8 Examples of tangential stress distributions in elliptical contact patches. Also shown the
line separating the adhesion region (top) and the sliding region(s) (bottom). Values of ϕ are in m−1

www.cargeek.ir

www.cargeek.ir

http://www.cargeek.ir/
http://www.cargeek.ir/


10.4 Adhesion Everywhere (Linear Behavior) 311

which, as expected, is linear in both σ and ϕ. The longitudinal force Fx is a function
of σx only, whereas the lateral force Fy depends on both σy and ϕ.

The coefficient Cσ may be called slip stiffness. In the brush model, Cσ is the
same for any direction of the tangential force, that is for any combination of σx

and σy . Moreover, in the brush model

Cσ = Cα = Cκx (10.68)

where Cα and Cκx were defined in (2.77) and (2.75).
The coefficient Cϕ is the spin stiffness for the lateral force. Owing to the symmet-

ric shape of the contact patch, the spin slip does not contribute to the longitudinal
force.

It is possible to insert (2.66) and (2.67), that is the practical slip components, into
(10.67), but the resulting function is no longer linear

Ft (κ, ϕ) = Fx i + Fyj = −Cσ

κx i + κyj
1 − κx

+ Cϕϕj (10.69)

Once again, the practical slip does not do a good job.
As shown in (2.60), if the yaw rate ωz is zero or at least negligible (as discussed

at p. 33), the spin slip ϕ becomes a function of γ only (besides Fz). In this case, we
can define the camber stiffness Cγ

Cγ = −Cϕ

rr
(1 − εr) < 0 (10.70)

and obtain (sinγ ≈ γ )

Ft (σ , γ ) = Fx i + Fyj = −Cσ (σx i + σyj) + Cγ γ j (10.71)

Typically, Fz/Cγ ≈ 1 for a motorcycle tire. Quite often, −Cσ σyj is called cornering
force and Cγ γ j is called camber force (or camber thrust). Obviously, only under the
very strong assumption of adhesion all over the contact patch, that is for very small
values of the skating slip ε, we have two separate and independent contributions to
the lateral force.

Under the same conditions and according to (10.65) we can compute the vertical
moment with respect to the center D of the contact patch

MD
z (σy,ϕ)k =

∫ b

−b

dŷ

∫ x̂0(ŷ)

−x̂0(ŷ)

(x̂i + ŷj) × kea(x̂, ŷ)dx̂

= (CMσ σy + CMϕϕ)k = −Fytck (10.72)

where tc is the pneumatic trail with respect to the contact center D. The last expres-
sion states quite a remarkable fact: that Fy = 0 means MD

z = 0 as well. The minus
sign makes tc > 0 under standard operating conditions.
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Combining (10.65), (10.67) and (10.72) we obtain the vertical moment with re-
spect to point O

Mz(γ,σ , ϕ) = CMσ σy + CMϕϕ

+ Cσ σx

[
cr(γ ) + wx − wy

wxwy

(−Cσ σy + Cϕϕ)

]
(10.73)

For a rectangular contact patch (i.e., x0(ŷ) = a) we have

Cσ = 4ka2b (10.74)

and

Cϕ = CMσ = a

3
Cσ , CMϕ = b2

3
Cσ , Cγ = −a(1 − εr )

3rr
Cσ (10.75)

Typically, Cγ � |Cσ |. From (10.67), (10.72) and (10.75) we can obtain the pneu-
matic trail tc for a rectangular contact patch

tc = σya + ϕb2

3(σy − ϕa)
(10.76)

Special, but quite important cases are ϕ = 0, which yields

tc = a

3
(10.77)

and σy = 0

tc = − b2

3a
(10.78)

For an elliptical contact patch the algebra is a bit more involved. The final ex-
pression of the tangential force Ft is exactly like in (10.67), but with the following
stiffnesses

Cσ = 8

3
ka2b and Cϕ = CMσ = 3πa

32
Cσ (10.79)

10.5 Wheel with Pure Translational Slip (σ �= 0, ϕ = 0)

The investigation of the steady-state behavior of the brush model is quite a simple
matter if there is no spin slip ϕ.

According to (10.44), if ϕ = 0 all points in the contact patch P have the same
skating slip ε, which is simply equal to σ

ε = σ (10.80)
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Fig. 10.9 Lines separating
the adhesion region (top) and
the sliding region (bottom) for
σ = (0.01,0.05,0.10,0.15,0.20,

0.266) and ϕ = 0. Pressure
distribution as in (10.17)

Therefore, the governing equation (10.46) in the adhesion region becomes

e′
a = σ = const (10.81)

whose solution, which is a linear function of x̂, is readily obtained as a special case
of (10.48)

ea(x̂, ŷ) = −σ
(
x̂0(ŷ) − x̂

)= −σ s
(
x̂0(ŷ) − x̂

)
(10.82)

All vectors ea have the same constant direction s = σ/σ , with σ = |σ |.
Like in (10.50), the adhesion state is maintained up to x̂s = x̂s(σ, ŷ), which marks

the point where the friction limit is reached

k
∣∣ea(x̂s , ŷ)

∣∣= κσ
(
x̂0(ŷ) − x̂s

)= μ0p(x̂s, ŷ) (10.83)

For the parabolic pressure distribution (10.12) we obtain

x̂s(σ, ŷ) = x̂0(ŷ)

[
κx̂0(ŷ)

μ0p0(ŷ)
σ − 1

]
(10.84)

It is worth noting that, if ϕ = 0, the line separating the adhesion and the sliding
regions depends solely on the magnitude σ of the slip. It is not affected by the
direction s of σ . Figure 10.9 shows, for an elliptical contact patch, the lines between
adhesion and sliding for a sequence of growing values of σ .

At x̂s the friction coefficient switches to its kinetic value μ1 and the sliding state
starts according to (10.51), that is with

kes(x̂s , ŷ) = −μ1p(x̂s, ŷ)s (10.85)

The really important aspect is that sliding begins with the bristle deflection ea

that has already the same constant direction s as ε = σ . Therefore, also e′
s is directed
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Fig. 10.10 Typical pattern of
the tangential stress in the
adhesion region (left) and in
the sliding region (right)

like s, and the governing equation (10.47) (or (10.52)) for the sliding region becomes
simply

kes(x̂, ŷ) = −μ1p(x̂, ŷ)s (10.86)

which is no longer a differential equation. Actually this is already the definition of
es in the sliding region.

Equations (10.82) and (10.86) provide the complete solution for this case. There-
fore, the tangential stress t at each point of the contact patch P is given by

t(x̂, ŷ) =
{

ta = −tas = −σk(x̂0(ŷ) − x̂)s, (adhesion)

ts = −tss = −μ1p(x̂, ŷ)s, (sliding)
(10.87)

where s = σ/σ , ta = |ta | and ts = |ts |. Actually, as in Fig. 10.10, we have assumed
that, for any y, a single adhesion region (x̂s(σ, ŷ) ≤ x̂ ≤ x̂0(ŷ)) is followed by a
single sliding region (−x̂0(ŷ) ≤ x̂ < x̂s(σ, ŷ)), as it is normally the case. However,
as shown in Fig. 10.6 for a fairly unrealistic pressure distribution, it is possible, at
least in principle, to have multiple regions.

Summing up, we have the following features (Fig. 10.10):

• the tangential stress t is directed like σ , with opposite sign;
• ta grows linearly in the adhesion region;
• ts follows the μ1p pattern in the sliding region;
• both ta and ts are not affected by the direction of σ ;
• the higher σ , the steeper the growth of ta and hence the closer the transition point

x̂s to the leading edge x̂0.

All these features can be appreciated in Figs. 10.11 and 10.12, which show the tan-
gential stress pattern, as predicted by the brush model, in rectangular and elliptical
contact patches under pure translational slip σ .

The global tangential force Ft = Fx i +Fyj that the road applies to the tire model
is given by the integral of t on the contact patch, like in (10.62). Of course, here the
analysis will provide Ft (σ ,0). Since all tangential stresses t have the same direction
−s, the computation simply amounts to integrating |t| (shaded area in Fig. 10.10)

Ft = −sFt (σ ) = −s
[∫ b

−b

dŷ

∫ x̂0(ŷ)

x̂s (σ,ŷ)

ta(σ, x̂, ŷ)dx̂ +
∫ b

−b

dŷ

∫ x̂s (σ,ŷ)

−x̂0(ŷ)

ts(x̂, ŷ)dx̂

]

(10.88)
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Fig. 10.11 Examples of tangential stress distributions in rectangular contact patches under pure
translational slip σ . Also shown is the line separating the adhesion region (top) and the sliding
region (bottom)

where Ft = |Ft |. The two components, that is the longitudinal force Fx and the
lateral force Fy , are given by

Fx = Fx(σx, σy) = −σx

σ
Ft (σ ), Fy = Fy(σx, σy) = −σy

σ
Ft (σ ) (10.89)
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Fig. 10.12 Examples of tangential stress distributions in elliptical contact patches under pure
translational slip σ . Also shown is the line separating the adhesion region (top) and the sliding
region (bottom)
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which imply σx/Fx = σy/Fy .
Summing up, in the brush model with ϕ = 0, the magnitude Ft(σ ) of the tangen-

tial force Ft depends on the magnitude σ =
√

σ 2
x + σ 2

y of the translational slip. The
vectors Ft and σ have the same direction, but opposite signs.

Partial derivatives can be readily obtained from (10.89)

−∂Fx

∂σx

= ∂

∂σx

(
σx

σ
Ft (σ )

)
=
(

σx

σ

)2(
F ′

t − Ft

σ

)
+ Ft

σ
,

−∂Fx

∂σy

= ∂

∂σy

(
σx

σ
Ft (σ )

)
=
(

σxσy

σ 2

)(
F ′

t − Ft

σ

) (10.90)

Those of Fy simply need interchanging x and y.
Equation (10.64) provides the vertical moment MD

z with respect to point D.
However, it can be considerably simplified in the case of ϕ = 0. As a matter of
fact, we see from (10.87) that t(x̂, ŷ) = t(x̂,−ŷ)9 and hence

MD
z (σx, σy) = −σy

σ

[∫ b

−b

dŷ

∫ x̂0(ŷ)

x̂s (σ,ŷ)

x̂ta(σ, x̂, ŷ)dx̂ +
∫ b

−b

dŷ

∫ x̂s (σ,ŷ)

−x̂0(ŷ)

x̂ts(x̂, ŷ)dx̂

]

(10.91)
It may be convenient to recast this equation in the following form

MD
z (σx, σy) = σy

σ
Ft (σ )tc(σ ) = −Fy(σx, σy)tc(σ ) (10.92)

which is, indeed, the definition of the pneumatic trail tc, that is the (signed) distance
from the contact center D of the line of action of the lateral force Fyj. A positive tc
stands for a lateral force behind D, which is the standard case.

10.5.1 Rectangular Contact Patch

Assuming a rectangular shape (Fig. 10.2) essentially means setting x̂0(ŷ) = a as the
equation of the leading edge. Therefore, any dependence on ŷ disappears and the
problem becomes one-dimensional, that is ea = ea(x̂) and es = es(x̂).

As shown in Fig. 10.11, in this case the line between the adhesion and the sliding
regions is simply a straight line directed like j

x̂s(σ ) = a

(
κa

μ0p0
σ − 1

)
= a

(
2

σ

σs

− 1

)
(10.93)

where

σs = 2μ0p0

ka
= 3μ0Fz

Cσ

= μ0

k

∣∣p′(a)
∣∣ (10.94)

9If, as usual, also x̂0(x̂, ŷ) = x̂0(x̂,−ŷ) and p(x̂, ŷ) = p(x̂,−ŷ).
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Fig. 10.13 Tangential stress
if σ = σs (total sliding)

If σ ≥ σs , regardless of the direction of σ , there is sliding on the whole rectangu-
lar contact patch, that is x̂s = a. For instance, with the numerical values of (10.43) at
p. 302, we have σs = 0.27, that is a fairly low value. At first, it may be surprising to
have full sliding without wheel locking (i.e., σ = ∞). The phenomenon is explained
in Fig. 10.13: to have total sliding it suffices that the straight line to be tangent to
the upper parabola at the leading edge. The value (10.94) of σs predicted by the
brush model is therefore quite “weak”, in the sense that it is very much affected
by the assumed pressure distribution. However, the existence of full sliding without
(necessarily) wheel locking is an important result.

Application of (10.88) with x̂0 = a and x̂s(σ ) as in (10.93) (and hence 0 ≤
σ ≤ σs ), provides the expression of the magnitude Ft of the tangential force

Ft = Ft(σ ) = Cσ σ

[
1 − σ

σs

(
1 + 2χ

1 + χ

)
+
(

σ

σs

)2( 1 + 3χ

3(1 + χ)

)]
(10.95)

where μ0 = (1+χ)μ1 as in (10.21). In this model and under these specific operating
conditions, Ft(σ ) is a polynomial function of σ , whose typical behavior is shown in
Fig. 10.14, along with its linear approximation (“good” only up to σ ≈ 0.03). From
Fig. 10.15 we can also appreciate how the adhesion and sliding regions contribute
separately to build up the total tangential force.

The derivative of Ft(σ ) is

F ′
t (σ ) = dFt

dσ
= Cσ

[
1 − 2

σ

σs

(
1 + 2χ

1 + χ

)
+
(

σ

σs

)2(1 + 3χ

1 + χ

)]
(10.96)

which, among other things, clearly provides the important result

dFt

dσ

∣∣∣∣
σ=0

= Cσ (10.97)

As expected, the force with total sliding is

Ft (σs) = μ1Fz (10.98)
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Fig. 10.14 Magnitude Ft of
the tangential force as a
function of σ , and
corresponding linear
approximation

Fig. 10.15 Contributions to
Ft (solid line) of the adhesion
region (long-dashed line) and
of the sliding region
(short-dashed line)

since all tangential stresses t have the same direction.
The peak value of Ft is

F max
t = Ft (σp) = μ0

[
4 − 3(μ1/μ0)

[3 − 2(μ1/μ0)]2

]
Fz = μ1

[
1 + 4χ3

(3χ + 1)2

]
Fz = μpFz

(10.99)
and it is achieved at σ = σp (Fig. 10.14)

σp = 1 + χ

1 + 3χ
σs (10.100)

Typically, as in Fig. 10.14, good tires have low values of σp . In this model, the
global friction coefficient μp is given by (cf. (2.76) and (2.78))

μp = F max
t

Fz

= μ1

[
1 + 4χ3

(3χ + 1)2

]
(10.101)

which means that, as expected

μ1 < μp � μ0 (10.102)

For instance, if μ0 = 1.2μ1, we have F max
t = 0.84μ0Fz = 1.013μ1Fz, that is a value

only marginally higher than Ft(σs). Indeed, as shown in Fig. 10.16, the mechanics
of the tire makes it very difficult to have tangential stresses close to μ0p. In practical
terms, attempts at increasing μ1 are more worthwhile than those at increasing μ0.
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Fig. 10.16 Tangential stress
if σ = σp (maximum
tangential force)

Fig. 10.17 Brush model
curve (solid line) and the
corresponding classical fitting
by the Magic Formula
(dashed line)

It may be interesting to fit the curve of Ft (σ ) shown in Fig. 10.14 by means of
the Magic Formula y(x) given in (2.79). According to Sect. 2.10, the four unknown
coefficients can be obtained by matching the peak value ym = Ft (σp) = 2.84 kN,
the asymptotic value ya = Ft (σs) = 2.80 kN, the slope at the origin y′(0) = Cσ =
37.8 kN/rad and the abscissa of the peak value xm = σp = 0.2. The resulting coef-
ficients are B = 12.1, C = 1.10, D = 2.835 kN and E = −3.63. The comparison
is shown in Fig. 10.17. The agreement between the two curves is quite poor. Par-
ticularly unacceptable is the initial increase of the slope, which is never found in
experimental curves (cf. Figs. 2.15 and 2.17). Indeed, E < −(1 + C2/2) and hence
y′′′(0) > 0.

A better agreement is shown in Fig. 10.18, where the asymptotic value was arbi-
trarily lowered to ya = 0.7Ft(σs), thus obtaining B = 8.81, C = 1.51, D = 2.84 kN
and E = 0.1. The lesson to be learnt is, perhaps, that the Magic Formula may occa-
sionally provide unexpected results and, therefore, should be used with care.

Going back to the brush model, the explicit expressions of Fx(σx, σy) and
Fy(σx, σy), that is of the longitudinal and lateral components, can be obtained by
inserting (10.95) into (10.89). Figure 10.19 illustrates the combined effect of σx

and σy . Quite remarkable is the effect on the slope at the origin, that is on the gen-
eralized slip stiffness C̃σ . From (10.90) and (10.95) it follows that

C̃σ (σy) = −∂Fx

∂σx

∣∣∣∣
σx=0

= Cσ

[
1 − |σy |

σs

1 + 2χ

1 + χ
+
(

σy

σs

)2 1 + 3χ

3(1 + χ)

]
(10.103)
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Fig. 10.18 Brush model
curve (solid line) and another
possible fitting by the Magic
Formula (dot-dashed line)

Fig. 10.19 Fy and Fx as
functions of σy , for
σx = (0,0.05,0.1,0.2)

and, interchanging x and y

C̃σ (σx) = −∂Fy

∂σy

∣∣∣∣
σy=0

= Cσ

[
1 − |σx |

σs

1 + 2χ

1 + χ
+
(

σx

σs

)2 1 + 3χ

3(1 + χ)

]
(10.104)

Of course C̃σ (0) = Cσ . This stiffness reduction has strong practical implications on
the handling behavior of vehicles.

It should be observed that the generalized cornering stiffness C̃α(σx) is no longer
equal to C̃σ (σx) (cf. (10.68))

C̃α(σx) = (1 + σx)C̃σ (σx) (10.105)

whereas C̃κx (σy) = C̃σ (σy).
Another useful plot is the one shown in Fig. 10.20. For any combination of

(σx, σy), a point in the plane (Fx,Fy) is obtained such that σx/σy = Fx/Fy . All
these points fall within a circle of radius F max

t , usually called the friction circle.
Lines with constant σy are also drawn in Fig. 10.20. Because of the symmetry of
this tire model, lines with constant σx are identical, but rotated of 90 degrees around
the origin.

More often, the plot employed is the one in Fig. 10.21, where lines with constant
slip angle α are drawn. Since α is a function of σx and σy (Eq. (2.69)), the two plots
contain exactly the same information. While the lines in Fig. 10.20 are symmetric
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Fig. 10.20 Friction circle
with lines at constant σy

Fig. 10.21 Friction circle of
Fig. 10.20, but with lines at
constant α

Fig. 10.22 Same slip angle α

with (a) σx = 0, (b) σx < 0
(driving), (c) σx > 0 (braking)

with respect to the vertical axis, lines in Fig. 10.21 are not. The asymmetry arises
simply because the slip angle is not the parameter to be used for a neat description
of the tire mechanics. Indeed, as schematically shown in Fig. 10.22, the bristles may
have different lateral deformations under the same slip angle.

As already mentioned at p. 31, tires have to be built in such a way to provide the
maximum tangential force Ft in any direction with small slip angles α, as shown
in Fig. 10.23. This is a fundamental requirement for a wheel with tire to behave
almost like a wheel, that is to have a directional capability. In other words, while Ft

can have any direction, the speed of travel Vc must undergo just small deviations α.
According to (2.69), this condition will be fulfilled if and only if the tire exhibits the
peak value of Ft for small values of the theoretical slip σp , typically below 0.2. On
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Fig. 10.23 Typical relationships between the tangential force Ft and the speed of travel Vc for a
tire rolling with theoretical slip 0 < σ < σp

the contrary, in a locked wheel the two vectors Ft and Vc always point in opposite
directions.

Equation (10.91), with x̂0 = a and x̂s as in (10.93), provides the vertical moment
MD

z with respect to the center D of the rectangular contact patch

MD
z (σx, σy) = σyCσ

a

3

[
1 − 3

σ

σs

1 + 2χ

1 + χ
+ 3

(
σ

σs

)2 1 + 3χ

1 + χ
−
(

σ

σs

)3 1 + 4χ

1 + χ

]

= σy

σ
Ft (σ )tc(σ ) = −Fy(σx, σy)tc(σ ) (10.106)

where tc is the pneumatic trail. The typical behavior of MD
z is shown in Fig. 10.24.

However, under combined slip conditions, to obtain Mz with respect to point O

it is necessary to take into account the carcass compliance, according to (10.65).
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Fig. 10.24 Vertical moment
MD

z versus σy , at constant σx

Fig. 10.25 Vertical moment
Mz versus σy , at constant σx

and γ = 0

The typical behavior of Mz(σx, σy) is shown in Fig. 10.25. The difference with
Fig. 10.24 is quite relevant.

Also of practical interest may be the plots of Mz vs Fx (Fig. 10.26) and of Fy vs
−Mz (Fig. 10.27), this one being often called Gough plot if σx = 0.

The three functions Fx(σx, σy), Fy(σx, σy) and Mz(σx, σy) can be seen as the
parametric equations of a three-dimensional surface that fully describes, at con-
stant vertical load Fz, the tire mechanical behavior. Such surface is shown in
Fig. 10.28(a), along with its three projections, which are precisely like Figs. 10.19,
10.26 and 10.27, respectively. The surface in Fig. 10.28(a) is called here the tire
action surface.

As already mentioned, a wheel with tire can be called a wheel because:

(1) the tire action surface is regular, in the sense that it does not fold onto itself, for
a limited set of values (σx, σy). It has therefore a limited contour and, hence,
the slip angle α is always quite low, according to (2.69). The goal of ABS [10]
is to avoid wheel locking and also to keep |α| very low, thus maintaining the
directional capability of the wheels;

(2) the vertical moment Mz is always moderate. A wheel must provide forces ap-
plied not far from the center of the contact patch.
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Fig. 10.26 Vertical moment
Mz versus longitudinal
force Fx , with lines at
constant σy (solid) and
constant σx (dashed: ±0.01,

±0.05,±0.1,±0.2)

Fig. 10.27 Lateral force Fy

versus vertical moment Mz ,
with lines at constant σx

(solid) and constant σy

(dashed: −0.01,−0.02,

−0.04,−0.08,−0.16)

10.5.2 Elliptical Contact Patch

Assuming an elliptical shape (Fig. 10.2) essentially means setting x̂0(ŷ) according to
(10.2). As shown in Figs. 10.9 and 10.12, in this case the line between the adhesion
and the sliding regions is curved. Its explicit equation is obtained inserting (10.2)
into (10.84). To have sliding on the whole elliptical contact patch, a very high value
of σ is necessary (Fig. 10.9).

Application of (10.88) with suitable x̂0(ŷ) and x̂s(σ, ŷ) provides the expression
of the magnitude Ft of the tangential force

Ft = Ft(σ ) = Cσ σ

[
1 − 18π

64

σ

σs

(
1 + 2χ

1 + χ

)
+ 12

45

(
σ

σs

)2(1 + 3χ

1 + χ

)]
(10.107)
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Fig. 10.28 Tire action surface for σ < σp , and its three projections (forces in kN and moments
in Nm)

where Cσ was obtained in (10.79) and σs is as in (10.94), although it has no special
meaning in this case. Again, Ft(σ ) is a polynomial function of σ , whose typical
behavior is much like in Fig. 10.14, but with a less evident peak.

10.6 Wheel with Pure Spin Slip (σ = 0, ϕ �= 0)

The investigation of the behavior of the brush model becomes much more involved
if there is spin slip ϕ. Even if σ = 0, the problem in the sliding region has to be
solved in full generality according to the governing equations (10.53). Therefore,
numerical solutions have to be sought.
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Fig. 10.29 Relationship
between the camber angle γ

and the spin slip ϕ, if ωz = 0,
εr = 0 and rr = 0.25 m

Fig. 10.30 Normalized
lateral force versus spin slip
(solid line). Also shown is the
contribution of the adhesion
zone (short-dashed line) and
of the sliding zone
(long-dashed line)

Fig. 10.31 Vertical moment
versus spin slip (solid line).
Also shown is the
contribution of the adhesion
zone (short-dashed line) and
of the sliding zone
(long-dashed line)

The definition of ϕ was given in (2.57) and is repeated here

ϕ = −ωz + ωc sinγ (1 − εr)

ωcrr
(2.57′)

It involves ωz, sinγ , εr , ωc and rr . However, in most applications spin slip means
camber angle γ , since ωz/ωc ≈ 0. Figure 10.29 reports an example of the relation-
ship between γ and ϕ, if εr = 0 (motorcycle tire), rr = 0.25 m and ωz = 0.

Large values of ϕ are attained only in motorcycles.10 Therefore, in this section
the analysis is restricted to elliptical contact patches. Figure 10.30 shows the almost
linear growth of the (normalized) lateral force Fn

y (0, ϕ) = Fn
y (ϕ) = Fy/Fz, even for

very large values of the spin slip. A similar pattern can be observed in Fig. 10.31
for the vertical moment MD

z = Mz. In both cases, the main contribution comes from
the adhesion regions.

10More generally, in tilting vehicles, which may have three wheels, like MP3 by Piaggio, or even
four.
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The lateral force plotted in Fig. 10.30 is precisely what is usually called the
camber force, that is the force exerted by the road on a tire under pure spin slip.

Some examples of tangential stress distributions are shown in Fig. 10.32. They
are quite informative. There is adhesion along the entire central line, and the stress
has a parabolic pattern. The value of ϕ does not affect the direction of the arrows
in the adhesion region, but only their magnitude. Even at ϕ = 3.33 m−1, i.e. a very
high value, the two symmetric sliding regions have spread only on less than half the
contact patch.

Another important observation is that there are longitudinal components of the
tangential stress, although the longitudinal force Fx = 0. In some sense, these com-
ponents are wasted, and keeping them as low as possible is a goal in the design of
real tires.

The comparison of Figs. 10.32(d) and 10.33 gives an idea of the effect of the
shape of the contact patch. In the second case the lengths of the axes have been
inverted, while all other parameters are unchanged. Nevertheless, the normalized
lateral force is much lower (0.36 vs 0.61).

In the brush model developed here, the lateral force and the vertical moment de-
pend on ϕ, but not directly on γ . Therefore, there is no distinction between operating
conditions with the same spin slip ϕ, but different camber angle γ as in Fig. 2.14.
This is a limitation of the model with respect to what stated at p. 32.

It should be appreciated that a cambered wheel under pure spin slip cannot be in
free rolling conditions. According to (2.11), there must be a torque T = Mz sinγ jc =
T jc with respect to the wheel axis. Conversely, T = 0 requires a longitudinal force
Fx and hence a longitudinal slip σx .

10.7 Wheel with Both Translational and Spin Slips

From the tire point of view, there are fundamentally two kinds of vehicles: cars,
trucks and the like, whose tires may operate at relatively large values of transla-
tional slip and small values of spin slip, and motorcycles, bicycles and other tilting
vehicles, whose tires typically operate with high camber angles and small transla-
tional slips. In both cases, the interaction between σ and ϕ in the mechanics of force
generation is of great practical relevance. The tuning of a vehicle often relies on the
right balance between these kinematical quantities.

10.7.1 Rectangular Contact Patch

Rectangular contact patches mimic those of car tires. Therefore, we will address the
effect of just a bit of spin slip on the lateral force of a wheel mainly subjected to
lateral slips. The goal is to achieve the highest possible value of Fn

y . Unfortunately,
it is not possible to obtain analytical results and a numerical approach has to be
pursued.
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Fig. 10.32 Examples of tangential stress distributions in elliptical contact patches under pure spin
slip ϕ. Also shown is the line separating the adhesion region (top) and the two sliding regions
(bottom). Values of ϕ are in m−1
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Fig. 10.33 Elliptical contact
patch with inverted
proportions.
(σx, σy,ϕ) = (0,0,3.33),
(F n

x ,F n
y ) = (0,0.36)

Fig. 10.34 Rectangular
contact patch under pure spin
slip (arrows magnified by a
factor 5 with respect to the
other figures).
(σx, σy,ϕ) = (0,0,0.21),
(F n

x ,F n
y ) = (0,0.06)

A rectangular contact patch under pure spin slip (arrows magnified by a factor 5)
is shown in Fig. 10.34. The global effect is a small lateral force, usually called
camber force.

Indeed, as shown in Fig. 10.35, the effect of a small amount of spin slip ϕ is, ba-
sically, to translate horizontally the curve of the lateral force versus σy .11 However,
the peak value is also affected, as more clearly shown in Fig. 10.36. By means of a
trial-and-error procedure it has been found, in the case at hand, that ϕ = 0.21 m−1

does indeed provide the highest positive value of Fn
y . In general, car tires need just a

few degrees of camber to provide the highest lateral force as a function of the lateral
slip σy (Fig. 10.37).

Such small values of spin slip have very little influence on longitudinal force
generation.

11Of course, the effect cannot be to “add” the camber force, that is to translate the curve vertically.
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Fig. 10.35 Normalized
lateral force Fn

y versus σy , for
ϕ = 0 (solid line),
ϕ = −0.21 m−1 (dashed
line), ϕ = 0.21 m−1

(dot-dashed line). σx = 0 in
all cases

Fig. 10.36 Detail of
Fig. 10.35 showing different
peak values

Fig. 10.37 Rectangular
contact patch under lateral
and spin slips. (σx, σy,ϕ) =
(0,−0.185,0.21),
(F n

x ,F n
y ) = (0,0.84)

10.7.2 Elliptical Contact Patch

Elliptical contact patches mimic those of motorcycle tires. Therefore, in this case we
will study the effect of just a bit of lateral slip σy on the lateral force of a cambered
wheel. Again, the goal is to achieve the highest possible value of Fn

y .
The large effect of even a small amount of σy on the normalized lateral force Fn

y

as a function of ϕ is shown in Fig. 10.38. However, this is quite an expected result
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Fig. 10.38 Normalized
lateral force vs spin slip, at
different values of lateral slip

Fig. 10.39 Vertical moment
vs spin slip, at different
values of lateral slip

after (10.79). Consistently, also the vertical moment MD
z changes a lot under the

influence of small variations of σy (Fig. 10.39).
Figure 10.40 provides a pictorial representation of the tangential stress in two

relevant cases, that is those that yield the highest lateral force. Quite remarkably, a
10 % higher value of Fn

y is achieved in case (b) with respect to case (a). In gen-
eral, a little σy has a great influence on the stress distribution in the contact patch.
Conversely, the same lateral force can be obtained by infinitely many combinations
(σy,ϕ). This is something most riders know intuitively. Obviously, Fx = 0 in all
cases of Fig. 10.40.

Under these operating conditions, according to (2.69), the slip angle α never
exceeds two degrees. Therefore, the wheel has excellent directional capability.

It should be observed that the larger value of Fn
y of case (b) in Fig. 10.40 is as-

sociated with a smaller value of MD
z . Basically, it means that the tangential stress

distribution in the contact patch is better organized to yield the lateral force, with-
out wasting much in the vertical moment (mainly due to useless longitudinal stress
components). The comparison shown in Fig. 10.40(c) confirms this conclusion.

A lateral slip in the “wrong” direction, like in Fig. 10.40(d), yields a reduction of
the lateral force and an increase of the vertical moment.

As reported in Figs. 10.38 and 10.39, there are particular combinations of (σy,ϕ)

which provide either Fn
y = 0 or MD

z = 0. The stress distributions in such two cases
are shown in Fig. 10.41.

The interaction of longitudinal slip σx and spin slip ϕ yields the effects reported
in Fig. 10.42 on the longitudinal and lateral forces. A fairly high value σx = −0.15
has been employed. Examples of stress distributions are given in Fig. 10.43.
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10.7 Wheel with Both Translational and Spin Slips 333

Fig. 10.40 Comparison between contact patches under (a) large spin slip only and (b) still quite
large spin slip with the addition of a little of lateral slip. Case (d) shown for completeness. Values
of ϕ are in m−1
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Fig. 10.41 Special cases: (a) zero lateral force and (b) zero vertical moment

Fig. 10.42 Normalized
longitudinal and lateral forces
vs spin slip, at σx = 0 (solid
line) and σx = −0.15 (dashed
lines)

10.8 Brush Model Transient Behavior

Understanding and describing the transient behavior of wheels with tires has be-
come increasingly important with the advent of electronic systems like ABS [10] or
traction control, which may impose very rapidly varying slip conditions (up to tens
of cycles per second).

Addressing the problem in its full generality like in Sect. 10.2, even in the simple
brush model, looks prohibitive. However, with the aid of some additional simplify-
ing assumptions, some interesting results can be achieved which, at least, give some
hints on what is going on when a tire is under transient operating conditions.
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Fig. 10.43 Examples of tangential stress distributions: (a) pure spin slip ϕ, (b) pure longitudinal
slip σx and (c) both ϕ and σx . Values of ϕ are in m−1
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In the next sections two possible simplified approaches will be developed. They
lead to complementary transient models. In both cases, inertia effects are totally
neglected.

10.8.1 Transient Model with Carcass Compliance only

A possible way to partly generalize the steady-state brush model discussed in
Sect. 10.3 is to relax only the second condition of p. 302, while still retaining the
first one, that is:

• e,t = 0;
• q̇ �= 0.

This approach, which leads to quite a simple and very popular transient tire model,
discards the transition in the bristle deflection pattern and takes care only of the
transient deformation of the carcass.12 Therefore, although rarely stated explicitly,
it can be safely employed whenever the carcass stiffnesses wx and/or wy are much
lower than the tread stiffness Kt = 4abk

wi � 4abk, i = x, y (10.108)

Indeed, this condition makes Ḟt �= 0 in (10.38) although e,t ≈ 0.
The general governing equations (10.35) and (10.36), with the assumption

e,t = 0, become

e′ = ρ − ϕ(x̂j − ŷi) = ε ⇐⇒ k|e| < μ0p (adhesion) (10.109)

ke = −μ1p
ε − e′

|ε − e′| ⇐⇒ ∣∣ε − e′∣∣ �= 0 (sliding) (10.110)

formally identical to the governing equations (10.46) and (10.47) of the steady-state
case, but with ρ = σ + q′ in place of σ . Therefore, the whole analysis developed
in Sect. 10.3 holds true in this case as well, with the only difference that ρ replaces
any occurrence of σ . Of particular importance is to understand that the global tan-
gential force Ft = Ft (ρ, ϕ) is exactly the same function of (10.62). For instance, in
a rectangular contact patch with ϕ = 0 the magnitude of Ft is given by a formula
like in (10.95)

Ft = Ft

(
ρ(t)
)= Cσ ρ

[
1 − ρ

σs

(
1 + 2χ

1 + χ

)
+
(

ρ

σs

)2( 1 + 3χ

3(1 + χ)

)]
(10.111)

with ρ = |ρ|, while the components Fx(ρx,ρy) and Fy(ρx,ρy) and their partial
derivatives are given by (10.89) and (10.90), respectively. Of course, ρ = ρx i + ρyj.

12This kind of models are often referred to as single contact point transient tire models [8].
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However, since ρ(t) = σ (t) + q̇(t)/Vr(t), the transient slip ρ(t) is an unknown
function and an additional vectorial equation is necessary (it was not so in the
steady-state case, which had q̇ = 0). The key step is obtaining Ḟt and inserting it
into (10.37), as already done in Sect. 10.2. The simplification with respect to the
transient general case is that here Ft (ρ, ϕ) is a known function and hence

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Ḟx = ∂Fx

∂ρx

ρ̇x + ∂Fx

∂ρy

ρ̇y + ∂Fx

∂ϕ
ϕ̇ = wxVr(ρx − σx)

Ḟy = ∂Fy

∂ρx

ρ̇x + ∂Fy

∂ρy

ρ̇y + ∂Fy

∂ϕ
ϕ̇ = wyVr(ρy − σy)

(10.112)

where, as shown in (10.90), the partial derivatives are known functions. This is a
system of linear differential equations with nonconstant coefficients in the unknown
functions ρx(t) and ρy(t). In general, it requires a numerical solution. Generalized
relaxation lengths can be defined in (10.112)

sxx = −∂Fx

∂ρx

1

wx

, sxy = −∂Fx

∂ρy

1

wx

syx = −∂Fy

∂ρx

1

wy

, sxy = −∂Fy

∂ρy

1

wy

(10.113)

Of course, they are functions of ρx and ρy . In [8, p. 346] this kind of model is called
fully nonlinear.

The most popular version of (10.112) assumes, more or less explicitly, a linear
function Ft (ρ, ϕ) = −Cσ (ρx i + ρyj) + Cϕϕj, exactly like in (10.67). Accordingly,
Eqs. (10.112) become

−Cσ ρ̇x = wxVr(ρx − σx)

−Cσ ρ̇y = wyVr(ρy − σy) − Cϕϕ̇
(10.114)

often conveniently rewritten as

sxρ̇x + Vrρx = Vrσx

syρ̇y + Vrρy = Vrσy + sϕϕ̇
(10.115)

where the constants

sx = Cσ

wx

and sy = Cσ

wy

(10.116)

are called, respectively, longitudinal and lateral relaxation lengths. Obviously,
sx ≤ sxx and sy ≤ syy . The term sϕϕ̇, with sϕ = Cϕ/wy , is usually discarded be-
cause it is really very small. The two equations in (10.115) are no longer a system
of equations, which simplifies further the model. With the data listed in (10.43), we
have sx = a and sy = 4a.
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Consistently with the assumption of linear tire behavior, inserting Ft = −Cσ ρ

into (10.115) leads to the most classical transient linear tire model (i = x, y)

si Ḟi + Vr(t)Fi = −Vr(t)Cσ σi(t) (10.117)

that is, to nonhomogeneous linear first-order differential equations [5]. The simplest
case is with constant Vr , which makes the equations with constant coefficients. The
homogeneous counterpart of (10.117) has solution

FO
i (t) = A e

− Vr
si

t
(10.118)

If also σi is constant, a particular solution is simply F
p
i = −Cσ σi . Therefore, in this

case the general solution of (10.117) with initial condition Fi(0) = 0 is

Fi(t) = −Cσ σi

(
1 − e

− Vr
si

t)
(10.119)

Under these very peculiar operating conditions, Fi(si/Vr) = −0.63Cσ σi , which is
often employed as a way to measure experimentally the relaxation length si . Also
interesting is the particular solution if σi(t) = σ0 sin(ωt) (the homogeneous solution
decays very rapidly)

F
p
i (t) = − Cσ σ0√

1 + (ωsi/Vr)2
sin
(
ωt − arctan(ωsi/Vr)

)
(10.120)

It is worth noting how the term ωsi/Vr affects both the amplitude (reducing it) and
the phase shift. The tire force is delayed with respect to the input.

Finally, it should be remarked that it is very common in the vehicle dynamics
community to employ (10.115), instead of (10.112), with a nonlinear function for
the tangential force, like, e.g., Ft = −(ρ/ρ)Ft (ρ) as in (10.89). Things are a bit
mixed up, but the allure of simplicity is quite powerful. Indeed, the differential equa-
tions in (10.112) are much more involved than those in (10.115), while employing a
nonlinear function for Ft is fairly straightforward. In [8, p. 345] this kind of model
is called semi-nonlinear.

10.8.2 Transient Model with Carcass and Tread Compliance

If the carcass and tread stiffnesses are comparable, that is if (10.108) does not hold,
the effects of e,t should also be taken into account, particularly under severe tran-
sient conditions. Therefore, both conditions listed at p. 302 are relaxed, that is:

• e,t �= 0;
• q̇ �= 0.

To keep the formulation rather simple, while still grasping the main phenomena,
it is useful to work under the following simplifying assumptions:
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• rectangular shape of the contact patch, which means x0(ŷ) = a;
• no spin slip ϕ;
• either pure longitudinal slip σx or pure lateral slip σy , but not both;
• μ0 = μ1, that is both equal to μ.

It is worth noting that complete adhesion in the contact patch is not assumed (cf. [8,
p. 220]). Like in Sect. 10.2, boundary conditions at the leading edge and initial
conditions on the whole contact patch need to be supplied, that is

e(a, ŷ, t) = 0, and e(x̂, ŷ,0) = 0 (10.121)

Nonzero initial conditions are possible, but may lead to more involved formulations.
Like in Sect. 10.5.1, the first two simplifying assumptions, along with zero initial

conditions, make e, and actually the whole formulation, not dependent on ŷ. The
additional effect of the third assumption is to have e(x̂, t) and ρ(t) with only one
nonzero component (directed like either i or j).

With ϕ = 0, the first general governing equation (10.35) (adhesion region) be-
comes

Vre,x̂ − e,t = Vrρ (10.122)

which is a nonhomogeneous transport equation in the unknown function e(x̂, t) =
ea(x̂, t). The tangential stress in the adhesion region is given by ta(x̂, t) = kea .

The adhesion state starts at the leading edge x̂ = a and is maintained up to x̂ =
x̂s(t), which marks, at time t , the moving point where the friction limit is reached

k
∣∣ea

(
x̂s(t), t

)∣∣= μp
(
x̂s(t)
)

(10.123)

and hence where the sliding region begins.
Exactly like in (10.86), the onset of sliding is with the bristle deflection that has

the same direction as ea(x̂s(t), t). Therefore, the governing equation (10.36) for the
sliding region becomes simply

ts(x̂) = kes(x̂) = μp(x̂)
ea(x̂s(t), t)

|ea(x̂s(t), t)| , with − a ≤ x̂ < x̂s(t) (10.124)

which is already the definition of es and hence of ts . It is important to note that in
the sliding region the bristle deflections es do not depend on time and, therefore, are
known. It is the moving transition point x̂s(t) that has to be found as a function of
time.

The global tangential force Ft (t) = Fx i + Fyj that the road applies to the tire
model is given by the integral of t = ke on the contact patch, like in (10.62), with
all tangential stresses t having the same direction

Ft (t) = −sFt(t) = k

[
2b

∫ a

x̂s (t)

ea(x̂, t)dx̂ + 2b

∫ x̂s (t)

−a

es(x̂)dx̂

]
(10.125)
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Since also ρ(t) = σ (t)+ q̇(t)/Vr(t) is unknown, an additional equation is neces-
sary. Exactly like in (10.38), it is obtained by differentiating Ft (t). But here, owing
to the simplifying assumptions, some further steps can be carried out,13 thus getting

Ḟt = 2bk

∫ a

x̂s (t)

e,tdx̂ = 2bkVr

∫ a

x̂s (t)

(e,x̂ − ρ)dx̂

= 2bkVr

[−e
(
x̂s(t), t

)− (a − x̂s(t)
)
ρ(t)
]

(10.126)

since e(a, t) = 0. This result can be inserted into (10.39) to get the sought equation

−2bk
[
e
(
x̂s(t), t

)+ (a − x̂s(t)
)
ρ(t)
]= W
[
ρ(t) − σ (t)

]
(10.127)

where W is a diagonal matrix, as in (10.11).
Summing up, the problem is therefore governed by either of the two follow-

ing (formally identical) systems of differential-algebraic equations, with suitable
boundary and initial conditions

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Vrex,x̂ − ex,t = Vrρx

k
∣∣ex

(
x̂s(t), t

)∣∣= μp
(
x̂s(t)
)

ρx(t) = wxσx(t) − 2bkex(x̂s(t), t)

wx + 2bk(a − x̂s(t))

ex(a, t) = 0

ex(x̂,0) = 0
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Vrey,x̂ − ey,t = Vrρy

k
∣∣ex

(
x̂s(t), t

)∣∣= μp
(
x̂s(t)
)

ρy(t) = wyσy(t) − 2bkey(x̂s(t), t)

wy + 2bk(a − x̂s(t))

ey(a, t) = 0

ey(x̂,0) = 0

(10.128)

where, possibly, Vr = Vr(t). Zero initial conditions imply that ρi(0) = wiσi(0)/

(wi + 4abk).
It should be remarked that, unlike the commonly used approaches described in

the previous section, the proposed model accounts not only for the transient defor-
mation of the carcass (i.e., q̇ �= 0), but also for the transient behavior of the bristle
deflection pattern (i.e., e,t �= 0). It will be shown that this last effect may be far from
negligible in some important cases, particularly in braking/driving wheels. More

13The main points are: es not depending on time, ea(x̂s , t) = es (x̂s ).
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precisely, the larger any of the ratios

θx = wx

Kt

, θy = wy

Kt

(10.129)

where Kt = 4abk is the tread stiffness, the more relevant the effect of the bristle
deflection in that direction. Since wx � wy , the transient behavior in the bristle
deflection pattern has more influence when the wheel is subject to time-varying
longitudinal slip. For instance, with the data reported at p. 302, we have θx = 1 and
θy = 0.25.

10.8.3 Numerical Examples

The proposed models for the transient behavior of tires are compared on a few nu-
merical tests. The goal is to show the range of applicability and to warn about em-
ploying a model without really understanding its capabilities.

In particular, three models of increasing complexity are compared. All tests are
performed with the data listed in (10.43), except for χ = 0, and under either pure
longitudinal slip or pure lateral slip. Moreover, a brush model with rectangular con-
tact patch and parabolic pressure distribution is assumed.

The first model (semi-nonlinear single contact point) takes into account only the
carcass compliance and employs a constant relaxation length si , with i = x, y. Ac-
cording to (10.115), the model is defined by

{
si ρ̇i + Vrρi = Vrσi

ρi(0) = 0
(10.130)

where si = Cσ /wi , with Cσ = 4ka2b as in (10.74). Once the function ρi(t) has been
obtained, the global tangential force is given by the nonlinear function

Fi(ρi) = −Cσ ρi

[
1 − |ρi |

σs

+ 1

3

(
ρi

σs

)2]
(10.131)

much like in (10.89) with (10.95).
The second model (nonlinear single contact point) is similar, but employs a non-

constant relaxation length, as in (10.112)
⎧⎪⎨
⎪⎩

− F ′
i (ρi)

wi

ρ̇i + Vrρi = Vrσi

ρi(0) = 0

(10.132)

where (cf. (10.96) with χ = 0)

F ′
i (ρi) = −Cσ

[
1 − 2

|ρi |
σs

+
(

ρi

σs

)2]
(10.133)
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A numerical solution is usually required. Again, the function ρi(t) is then inserted
into (10.131).

The third model (nonlinear full contact patch) takes into account both the carcass
and tread compliances, as in (10.128)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Vrei,x̂ − ei,t = Vrρi

k
∣∣ei

(
x̂s(t), t

)∣∣= μp
(
x̂s(t)
)

ρi(t) = wiσi(t) − 2bkei(x̂s(t), t)

wi + 2bk(a − x̂s(t))

ei(a, t) = 0

ei(x̂,0) = 0

(10.134)

To obtain a numerical solution, an iterative method can be employed. First make an
initial guess for ρ

(0)
i (t) (for instance ρ

(0)
i (t) = (σi(t) + ρs

i (t))/2, where ρs
i (t) is the

solution of (10.130)). By means of the first equation, numerically obtain e
(0)
x (x̂, t),

and then, using the second equation, evaluate the function x̂
(0)
s . At this stage, the

first iteration can be completed by computing ρ
(1)
i (t) by means of the third equation.

The whole procedure has to be repeated (usually 5 to 15 times) until convergence is
attained.

Once a good approximation of ei(x̂, t) and x̂s(t) (and also of ρi(t)) has been
computed, the tangential force can be obtained from the following integral over the
contact patch

Fi(t) = 2bk

[∫ a

x̂s (t)

ei(x̂, t)dx̂ + μ sign
(
ei

(
x̂s(t), t

))∫ x̂s (t)

−a

p(x̂)dx̂

]
(10.135)

A step change in the input (forcing) function σi(t) works well to highlight the
differences between the three models. With the data of (10.43), except χ = 0, the
static tangential force (10.131) has maximum magnitude for σ = 0.266. To test the
models in both the (almost) linear and nonlinear ranges, a small (σi = −0.07) and a
large (σi = −0.21) step have been selected. Since wx = 4wy , both longitudinal and
lateral numerical tests are performed.

In all cases, results are plotted versus the rolling distance s, instead of time, thus
making Vr(t) irrelevant.

10.8.3.1 Longitudinal Step Input

The longitudinal force Fx(s), as obtained from the three tire models with step inputs
σx = −0.07 and σx = −0.21, is shown in Fig. 10.44. Because of the high value of
the longitudinal carcass stiffness wx (equal to the tread stiffness Kt ), the transient
phenomenon is quite fast. Indeed, in the first model (dashed line) the relaxation
length sx = 7.5 cm.
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Fig. 10.44 Longitudinal
force response to small and
large step changes in σx .
Comparison of three tire
models: semi-nonlinear single
contact point (dashed line),
nonlinear single contact point
(dot-dashed line), nonlinear
full contact patch (solid line)

Fig. 10.45 Transient patterns
of the tangential stress tx in
the contact patch (third
model)

Quite remarkably, the three models provide very different results, thus showing
that the selection of the transient tire model may be a crucial aspect in vehicle dy-
namics, particularly when considering vehicles equipped with ABS.

The behavior of the first model (dashed lines) is the same in both cases, except
for a vertical scaling. This is not the case for the second model (dot-dashed lines)
because of the nonconstant generalized relaxation length. The more detailed third
model (solid lines) behaves in quite a peculiar way, thus confirming that the contri-
bution of the transient tread deflection is far from negligible.

Figure 10.45 shows the transient pattern of the tangential longitudinal stress tx in
the contact patch as provided by the third model with σx = −0.21. It is worth noting
how greatly, in the adhesion region, the pattern departs from the linear behavior of
the static case (Fig. 10.10).

10.8.3.2 Lateral Step Input

The lateral force Fy(s), as obtained from the three tire models with step inputs
σy = −0.07 and σy = −0.21, is shown in Fig. 10.46. Because of the low value of
the lateral carcass stiffness wy (equal to one fourth of the tread stiffness Kt ), the
transient phenomenon is not as fast as in the longitudinal case. Indeed, in the first
model the relaxation length sy = 30 cm.

In this case, the three models provide not very different results in the linear range,
while they depart significantly in the nonlinear range, that is with σy = −0.21.
Therefore, the selection of the transient tire model may be crucial in lateral dy-
namics as well.
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Fig. 10.46 Lateral force
response to small and large
step changes in σy .
Comparison of three tire
models: semi-nonlinear single
contact point (dashed line),
nonlinear single contact point
(dot-dashed line), nonlinear
full contact patch (solid line)

Fig. 10.47 Transient patterns
of the tangential stress ty in
the contact patch (third
model)

It should be observed from Figs. 10.44 and 10.46 that the first and second models
have the same “formal” behavior. Therefore, changing the carcass stiffness results
only in a horizontal scaling. This is not true for the third model.

Figure 10.47 shows the transient pattern of the tangential lateral stress in the
contact patch as provided by the third model with σy = −0.21. There are still dif-
ferences with respect to the static case, although not as much as in Fig. 10.45.

10.9 Summary

In this chapter a relatively simple, yet significant, tire model has been developed. It
is basically a brush model, but with some noteworthy additions with respect to more
common formulations. For instance, the model takes care of the transient phenom-
ena that occur in the contact patch. A number of figures show the pattern of the local
actions within the contact patch (rectangular and elliptical).

10.10 List of Some Relevant Concepts

p. 299 the skating slip takes into account both transient translational slip and spin
slip;

p. 304 each bristle is undeformed when it enters the contact patch;
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p. 312 the analysis of the steady-state behavior of the brush model is quite simple
if there is no spin slip;

p. 318 full sliding does not imply wheel locking;
p. 322 the slip angle α is not a good parameter for a neat description of tire me-

chanics;
p. 323 tires have to be built in such a way to provide the maximum tangential force

in any direction with small slip angles. This is a fundamental requirement for
a wheel with tire to have a directional capability;

p. 324 the tire action surface summarizes the tire characteristics under a constant
vertical load;

p. 326 the tire action surface summarizes the steady-state behavior of a tire;
p. 332 good wheel directional capability means small slip angles.
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ωz , 10
Φ1, 181
Φ2, 181
Υij , 89, 134
�, 9, 48, 275
Ω , 241
Ωr , 27
Ωsz , 28
Ωz, 11

A
ABS, 324, 334, 343
Acceleration

angular, 53
center, 52
lateral, 53

steady-state, 53, 150, 151
longitudinal, 53
of the velocity center, 52

Acceleration center, 54, 116
Achievable region, 160, 161, 170
Ackermann angle, 52
Adhesion, 297, 300, 304, 313, 314, 339
Aerodynamic downforce, 60, 151, 210, 225,

227, 228
Aerodynamic force, 60
Aerodynamic moment, 60
Alternative state variable, 144
Angular momentum, 59
Angular velocity, 275
Anti-roll bar, 268
Apparent slip angle, 140, 152, 154, 210
Assumptions, 4, 47
Autocorrelation function, 252
Axle characteristic, 138, 140, 152, 181, 209
Axle lateral slip stiffness, 186

B
Bicycle model, 136
Body roll angle, 68
Body vertical displacement, 68
Bounce, 258, 264
Brake

balance, 103
bias, 103

Brake balance, 99, 103
Brake bias, 99
Braking, 100

best performance, 103
efficiency, 105
of Formula car, 107

Braking efficiency, 105
Bristle stiffness, 298

Brush model, 23, 291, 297, 303
transient, 301

C
Camber, 57, 100, 142, 308
Camber angle, 9–11, 32, 57, 90, 135, 327

variation, 69
Camber force, 311, 328, 330
Camber reduction factor, 25, 28, 90
Camber stiffness, 311
Camber variation, 135, 143
Carcass, 12

compliance, 23, 294, 308, 323
Carcass stiffness, 336, 338
Caster angle, 47
Center

of zero acceleration, 55
of zero velocity, 51

Center of acceleration, 116
Center of curvature, 117
Center of gravity, 4
Center of velocity, 114
Centrode

fixed, 114
moving, 114

Characteristic speed, 179
Coefficient of kinetic friction, 297
Coefficient of static friction, 297
Comfort, 235, 247
Compliant steering system, 198
Congruence equations, 48, 136, 237, 254
Constant steering wheel test, 179
Constitutive equations, 48, 238, 255
Constitutive relation, 297
Contact patch, 7, 8, 13, 14, 17, 19, 20, 30, 33,

292, 312
Contractive suspensions, 72
Control derivatives, 170, 173, 175, 177, 181
Convergence, 100
Cornering force, 311
Cornering stiffness, 35

generalized, 321
Critical speed, 157, 180, 190
Curvature, 54

radius, 54
Curvature factor, 38

D
Damping

coefficient, 236, 287
factor, 244
matrix, 238, 241
ratio, 244

Deflection, 297
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Dependent suspension, 82
Differential, 90

limited slip, 93
locked, 93
open, 93, 132

Directional capability, 324, 332
Double track model, 136
Drag coefficient, 60
Driveable road vehicle, 2
Dynamic index, 260

E
Elemental rotation, 272
Empirical tire models, 38
Equilibrium equations, 48, 238, 255

global, 63
Ergodic process, 252
Euler, 113
Euler angles, 273
Evolute, 130

F
Footprint, see contact patch, 7
Force-couple system, 14
Formula 1, 109
Forward velocity, 27, 49, 281
Fourier transform, 252
Free rolling, 22, 328
Frequency spectrum, 252
Friction circle, 321
Friction coefficient

global, 34
local, 297

Frontal area, 60

G
Global friction coefficient, 39, 319

lateral, 35
longitudinal, 34

Global longitudinal friction coefficient, 101
Gough plot, 324
Gradient, 176, 179
Grip, 13, 152

coefficient, 105

H
Handling, 3

curve, 156, 211
diagram, 157, 210, 225
map, 160
surface, 210, 211, 223, 225

Hop, 241

I
Inclination angle, see camber angle
Inertance, 237
Inerter, 235, 243, 251
Inertia tensor, 59
Inflection circle, 55, 115, 123
Instantaneous center of rotation, 114
Instantaneous center of zero acceleration, 116
Instantaneous center of zero velocity, 51
Interconnected suspension, 267
Internal efficiency, 92
Invariant, 281
Invariant point, 289

J
J-Damper, 243
Jacking, 79, 278

K
Kingpin inclination angle, 47

L
Lateral acceleration, 53, 150

steady-state, 153
Lateral force, 14, 24, 35, 59, 315, 328, 331
Lateral load transfer, 66, 288
Lateral slip stiffness, 35
Lateral velocity, 24, 27, 49, 281
Leading edge, 292, 298, 301
Limited slip differential, 93
Line of nodes, 273
Load transfer

lateral, 66, 79, 288
longitudinal, 65, 102, 288

Local friction coefficient, 297
Locked wheel, 30
Longitudinal acceleration, 53
Longitudinal force, 14, 22, 34, 59, 315
Longitudinal load transfer, 65, 102, 288
Longitudinal slip stiffness, 34

M
MacPherson strut, 75
Macroroughness, 13
Magic Formula, 38, 320
Magic numbers, 178
MAP, 160, 170, 210, 225, 228, 230, 231
Map of Achievable Performance, 160, 225
Mass

sprung, 85, 282
unsprung, 85, 286

Mass matrix, 238, 241
Maximum deceleration, 102, 108
Microroughness, 13
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Moment
pitching, 59
rolling, 59
yawing, 59

Motion center, 258

N
Net steer angle, 160
Neutral steer point, 195
Nitrogen, 7
No-roll

axis, 77, 95
center, 76, 83
triangle, 97

No-roll axis, 271
No-roll center, 82, 277
No-roll center for a MacPherson strut, 76
Node, 258
Normal force, 14
Normalized

lateral force, 307, 308, 327, 328
longitudinal force, 307, 308

Normalized axle characteristics, 152
Nose-in, 151
Nose-out, 151

O
Open differential, 93, 132, 133
Optimal damping, 246
Optimal damping coefficient, 248
Oscillation center, 258
Oversteer, 154, 164
Oversteer behavior, 157
Overturning, 102, 106
Overturning moment, 14

P
Panhard rod, 82
Parallel steering, 210
Peak value, 38, 319
Performance, 3

map of achievable, 225
Pitch, 236, 258, 264, 272, 287

angle, 272
Pitching moment, 59
Pneumatic tire, 7
Pneumatic trail, 199, 311, 312, 317, 323
Power spectral density, 253
Power-off, 92, 217, 231
Power-on, 92, 217, 231
Practical slip, 29, 33, 311
Pressure distribution, 295
Principal coordinates, 261
Proportional damping, 256

Pure rolling, 8, 21, 22, 26, 27, 58, 132, 292,
294, 299

Pure rolling radius, 23
Pure slip conditions, 33

Q
Quarter car model, 239, 253

R
Radius of curvature, 54, 117
Random process, 252
Rear steering, 160, 168
Reference configuration, 47
Relaxation length, 337
Ride, 3, 235
Rigid body, 59, 113
Rigid tire, 82
Rim

kinematics, 11
position, 11

Rim angular velocity, 10
Road holding, 235, 247
Road profile, 237, 252
Roll, 272

angle, 70, 79, 272
axis, 75, 95
center, 75
stiffness, 71

Roll angle, 75, 80, 87
body, 68

Roll axis, 75, 271, 278
Roll center, 68, 75
Roll steer, 89, 134, 140, 186
Rolling

free, 21
pure, 21

Rolling distance, 298, 301, 342
Rolling moment, 59
Rolling radius, 23, 25, 28, 57
Rolling resistance, 20, 22, 63
Rolling resistance coefficient, 22
Rolling resistance moment, 14
Rolling spin velocity, 27
Rolling velocity, 27, 30, 57, 132, 298, 301
Rotation

elemental, 272
Roughness, 253

S
Scrub radius, 47
Self-aligning torque, see vertical moment, 14
Shape factor, 38, 39
Shifted coordinates, 177
Single track model, 131, 136, 158, 181, 199
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Skating slip, 299, 302, 305
Skating velocity, 299
Sliding, 297, 305, 314, 318, 325, 339
Sliding velocity, 297, 300
Slip, 33

practical, 29
skating, 299
spin, 28, 299
theoretical, 28, 89
translational, 28, 89, 299

transient, 299, 337
turn, 29

Slip angle, 30, 33, 56, 321, 332
apparent, 140, 210

Slip functions, 154
Slip ratio, 30
Slip spin velocity, 28, 298, 299
Slip stiffness, 311, 312, 321

generalized, 320
Slip velocity, 28
Slowly increasing steer, 209
Speed of travel, 27, 30, 299
Spin slip, 29, 56, 89, 90, 326
Spin stiffness, 311
Spin velocity, 11, 25
Spinning wheel, 30
Sprung mass, 4, 85, 236, 282
Stability boundary, 164
Stability derivatives, 170, 171, 175, 177, 181
Static condition, 4
Static margin, 195
Steady-state conditions, 53
Steer

angle, 160
step input, 33

Steering angle, 47
Steering axis, 4, 15, 47
Step steering input, 33, 177, 184
Stick region, see adhesion
Stiffness, 236

roll, 72
vertical, 72

Stiffness factor, 38
Stiffness matrix, 239, 241
Suspension

deflection, 47
dependent, 3, 82
double wishbone, 6, 74
first order analysis, 67
independent, 3
interconnected, 267
internal coordinates, 67
jacking, 79

reference configuration, 67
swing arm, 6, 74

Suspension deflection, 4
Suspension jacking, 79
Swing axle suspension, 68

T
Tangent speed, 194
Tangential force, 293, 307

normalized, 307
TBR, 92, 204
Theoretical lateral slip, 29
Theoretical longitudinal slip, 29
Theoretical slip, 29
Three-axle vehicle, 95
Tire

action surface, 324
lateral slip, 134
mechanics, 39
rigid, 82
slips, 26, 27, 56
steady-state behavior, 18
stiffness, 67
testing, 33
transient behavior, 17
vertical stiffness, 236

Toe-in, 100, 134, 142
Toe-out, 142
Torque

with respect to wheel axis, 15, 20, 328
Torque Bias Ratio, 92
Track, 4
Track invariant point, 278
Track variation, 88
Trail, 47
Trailing edge, 292
Trajectory, 50, 117
Translational slip, 56
Transport equation, 339
Tread, 12
Tread pattern, 14
Tread stiffness, 336, 338, 341
Trim conditions, 170
Truck, 95
Turn slip, 29

U
Understeer, 154, 161
Understeer behavior, 157
Understeer gradient, 154, 179

new, 179
Unsprung mass, 4, 85, 236, 286
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V
Vehicle

internal coordinates, 70
Vehicle definition, 2
Vehicle invariant point, 281
Vehicle slip angle, 52, 147
Velocity center, 51, 114
Vertical force, 59
Vertical load, 14, 19
Vertical moment, 14, 15, 24, 37, 293, 308, 312,

323, 324, 332
VIP, 281

W
Weak concept, 95, 158, 179, 180
Weight, 60
Wheelbase, 4, 52, 153, 158

Willis formula, 91
Wrench, 15

Y
Yaw, 272

angle, 50, 272
rate, 49

Yaw rate, 11, 49, 311
of the wheel, 10, 32

Yawing moment, 59, 64, 176, 206, 214
y(x), 38

Z
Zero

lateral force, 24
longitudinal force, 23
vertical moment, 24
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