www.CarGeek.ir

M161 ENGINE KORRM2A/2/1

Korando

SERVICE MANUAL

www.cargeek.ir

SECTION 1A2

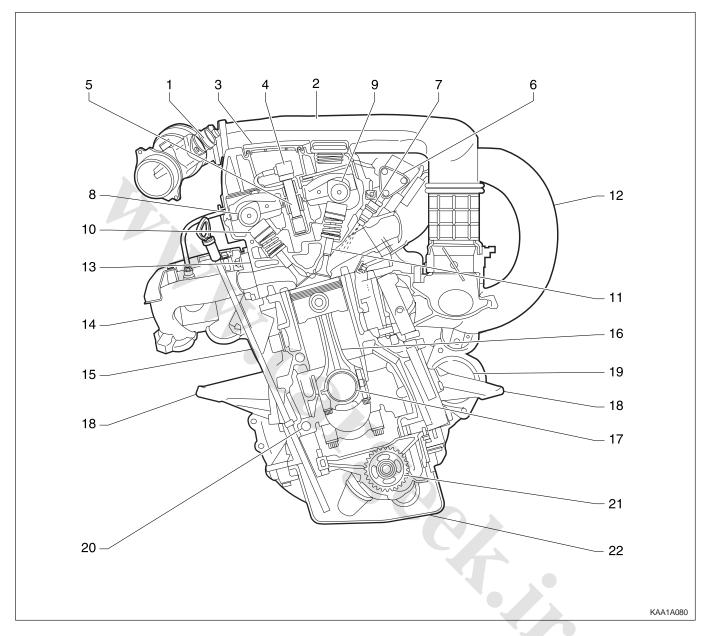
M161 GENERAL ENGINE INFORMATION

TABLE OF CONTENTS

Specifications	1A2-2
Engine Specifications	1A2-2
Component Locator	1A2-3
Front View	1A2-3
Side View	1A2-4
Performance Curve	1A2-5
E23 Engine	1A2-5

Diagnosis	1A2-
Oil Leak Diagnosis	1A2-
Engine Cranking at the Front of Crankshaft	1A2-
Compression Pressure Test	1A2-
Cylinder Pressure Leakage Test	1A2-1
General Imformation	1A2-1
Cleanliness and Care	1A2-1
On-Engine Service	1A2-1

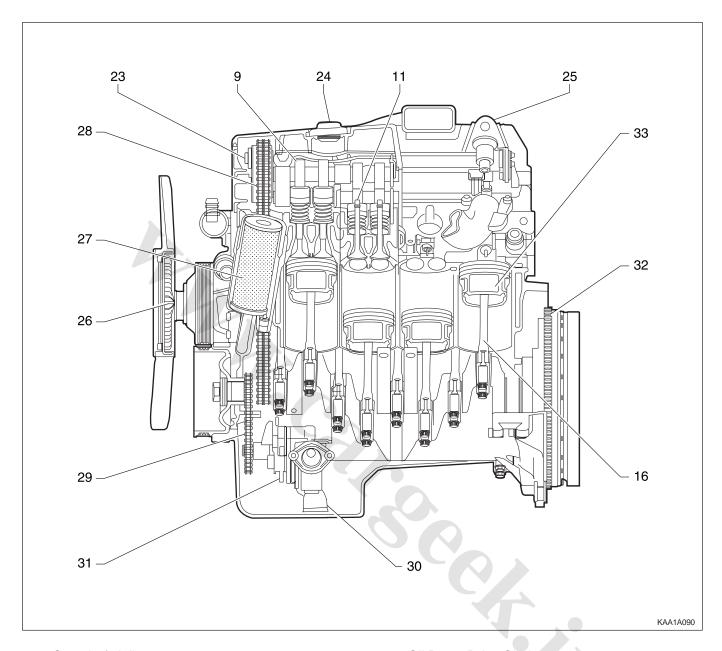
SPECIFICATIONS


ENGINE SPECIFICATIONS

	Application	1	E23 Engine
Engine Model			M161.970
Displacement (CC	C)		2295
Cylinder (Bore x S	Stroke) (mm)		90.9 x 88.4
Fuel Injection / Ig	nition System		MSE 3.53S
Compression Rat	io		10.4 : 1
Number of Cylind	ers		4
Camshaft Valve A	rrangement		DOHC
Camshaft Drive T	ype		Chain - Driven
Max. Output (ps/i	rpm)		149 / 5500
Max. Torque (kg•	m/rpm)		22.4 / 4000
Firing Order			1 - 3 - 4 - 2
Ignition Type			Distributorless
Ignition Timing			BTDC 6° ± 2°
Valve Timing	Intake	Open/Close	ATDC 19.25° / ABDC 28.76°
	Exhaust	Open/Close	BBDC 20.62° / BTDC 15.08°
Valve Clearance	alve Clearance Adjustment		Automatic Control
Idle Speed (rpm)			750 ± 50
Fuel Injection Pre	essure (kg/cm²)		3.2 - 4.2
Oil Capacity (liter))		7.5
Lubrication Type			Forced by Gear Pump
Oil Filter Type			Full Flow with Paper Filter
Fuel			Unleaded Gasoline
MSE 3.625S/3.533 MSE : Engine Con 3.62S : 6 Cylinder 3.53S : 4 Cylinder	trol Electronic Version	r Elektronik : Germa	un)

MSE 3.625S/3.53S (Motorsteuer Elektronik : German)

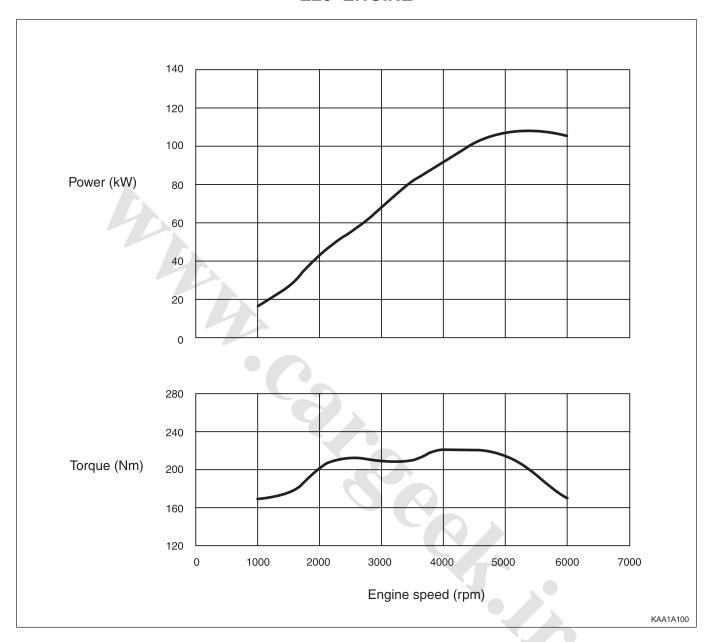
COMPONENT LOCATOR


FRONT VIEW

- 1 HFM Sensor
- 2 Intake Air Duct
- 3 Cylinder Head Cover
- 4 Ignition Coil
- 5 Spark Plug Connector
- 6 Fuel Distributor
- 7 Injector
- 8 Exhaust Camshaft
- 9 Intake Camshaft
- 10 Valve Tappet
- 11 Intake Valve

- 12 Intake Manifold
- 13 Cylinder Head
- 14 Exhaust Manifold
- 15 Dipstick Guide Tube and Gauge
- 16 Connecting Rod
- 17 Crankshaft
- 18 Engine Mounting Bracket
- 19 Starter
- 20 Crankcase
- 21 Oil Pump Sprocket
- 22 Oil Pan

SIDE VIEW



- 23 Camshaft Adjuster
- 24 Oil Filler Cap
- 25 Engine Hanger Bracket
- 26 Cooling Fan and Viscous Clutch
- 27 Oil Filter
- 28 Timing Chain

- 29 Oil Pump Drive Chain
- 30 Oil Strainer
- 31 Oil Pump
- 32 Ring Gear and Flywheel of Drive Plate
- 33 Piston

PERFORMANCE CURVE

E23 ENGINE

DIAGNOSIS

OIL LEAK DIAGNOSIS

Most fluid oil leaks are easily located and repaired by visually finding the leak and replacing or repairing the necessary parts. On some occasions a fluid leak may be difficult to locate or repair. The following procedures may help you in locating and repairing most leaks.

Finding the Leak

- 1. Identify the fluid. Determine whether it is engine oil, automatic transmission fluid, power steering fluid, etc.
- 2. Identify where the fluid is leaking from.
 - 2.1 After running the vehicle at normal operating temperature, park the vehicle over a large sheet of paper.
 - 2.2 Wait a few minutes.
 - 2.3 You should be able to find the approximate location of the leak by the drippings on the paper.
- Visually check around the suspected component. Check around all the gasket mating surfaces for leaks. A mirror is useful for finding leaks in areas that are hard to reach.
- If the leak still cannot be found, it may be necessary to clean the suspected area with a degreaser, steam or spray solvent.
 - 4.1 Clean the area well.
 - 4.2 Dry the area.
 - 4.3 Operate the vehicle for several miles at normal operating temperature and varying speeds.
 - 4.4 After operating the vehicle, visually check the suspected component.
 - 4.5 If you still cannot locate the leak, try using the powder or black light and dye method.

Powder Method

- 1. Clean the suspected area.
- 2. Apply an aerosol-type powder (such as foot powder) to the suspected area.
- 3. Operate the vehicle under normal operating conditoins.
- 4. Visually inspect the suspected component. You should be able to trace the leak path over the white powder surface to the source.

Black Light and Dye Method

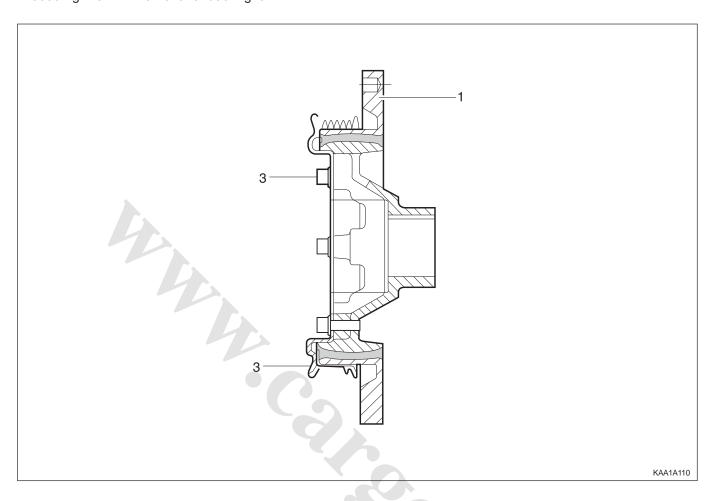
A dye and light kit is available for finding leaks, Refer to the manufacturer's directions when using the kit.

- Pour the specified amount of dye into the engine oil fill tube.
- Operate the vehicle normal operating conditions as directed in the kit.
- 3. Direct the light toward the suspected area. The dyed fluid will appear as a yellow path leading to the source.

Repairing the Leak

Once the origin of the leak has been pinpointed and traced back to its source, the cause of the leak must be determined in order for it to be repaired properly. If a gasket is replaced, but the sealing flange is bent, the new gasket will not repair the leak. The bent flange must be repaired also. Before attempting to repair a leak, check for the following conditions and correct them as they may cause a leak.

Gaskets

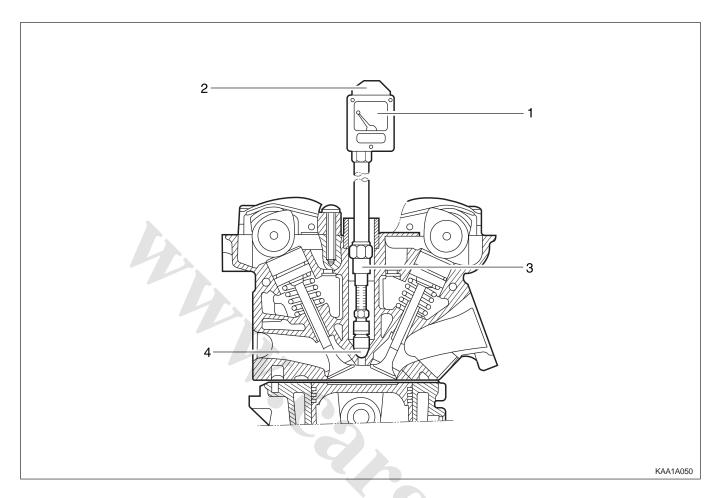

- The fluid level/pressure is too high.
- The crankcase ventilation system is malfunctioning.
- The fasteners are tightened improperly or the threads are dirty or damaged.
- The flanges or the sealing surface is warped.
- There are scratches, burrs or other damage to the sealing surface.
- The gasket is damaged or worn.
- There is cracking or porosity of the component.
- An improper seal was used (where applicable).

Seals

- The fluid level/pressure is too high.
- The crankcase ventilation system is malfunctioning.
- The seal bore is damaged (scratched, burred or nicked).
- The seal is damaged or worn.
- Improper installation is evident.
- There are cracks in the components.
- The shaft surface is scratched, nicked or damaged.
- A loose or worn bearing is causing excess seal wear.

ENGINE CRANKING AT THE FRONT OF CRANKSHAFT

Preceding Work: Removal of cooling fan


- 1 Vibration Damper Assembly
- 2 Crankshaft Pulley

3 Bolt...... 8.6 ± 0.9 N•m

Notice:

- Remove the negative ground cable before proceeding the work.
- Rotate the pulley in normal engine rotating direction when cranking.

COMPRESSION PRESSURE TEST

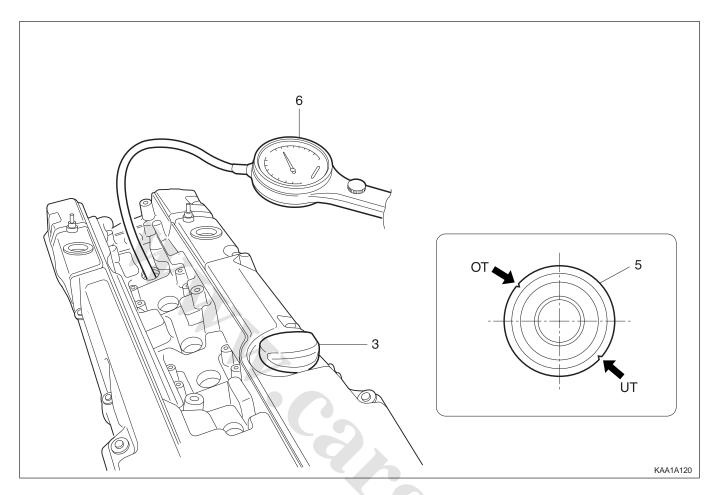
- 1 Compression Pressure Tester
- 2 Diagram Sheet

- 3 Adaptor
- 4 Sealing Cone

Standard Service Data

Compression Ratio		10.4, 9.6
Normal Engine Temperature		80°C
Normal Compression Pressure	E23 Engine (e = 10.4)	Min. 11 bar, Max. 15 bar
Permissible Pressure Difference Bet	ween Individual Cylinders	Max. 1.5 bar

Measuring Procedure


- 1. Warm the engine up to normal operating temperature.
- 2. Remove the spark plugs.
- 3. Place the diagram sheet to compression pressure tester.
- 4. Connect the adaptor to compression pressure tester and install it into the spark plug hole.
- 5. Crank the engine approx. eight revolutions by using the start motor.

- 6. Compare the measurements of compression pressure tester with the specifications.
- 7. Measure the compression pressure of the other cylinders in the same way.
- 8. If measured value is not within the specifications, perform the cylinder pressure leakage test.

Notice:

- Discharge the combustion residues in the cylinders before testing the compression pressure.
- Apply the parking brake before cranking the engine.

CYLINDER PRESSURE LEAKAGE TEST

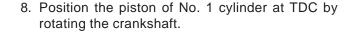
- 3 Engine Oil Filler Cap
- 5 Vibration Damper

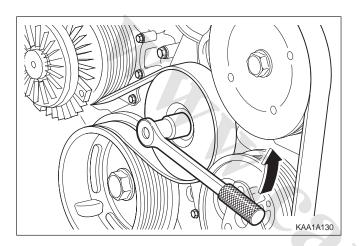
6 Cylinder Pressure Leakage Tester with Connecting Hose

Permissible Pressure Leakage

At Whole Engine	Max. 25 %
At Valve and Cylinder Head Gasket	Max. 10 %
At Piston and Piston Ring	Max. 20 %

Cylinder Number By Mark On Vibration Damper At TDC


TDC Mark	OT (TDC)	UT (BDC 180 °)
Cylinder Number	1, 4	2, 3


Universal Tool

Cylinder Pressure Leakage Tester	Bosch, EFAW 210A
	Sun, CLT 228

Leakage Test

- 1. Warm the engine up to normal operating temperature.
- 2. Disconnect the negative battery cable.
- 3. Remove the spark plugs.
- 4. Check the coolant level by opening the coolant reservoir cap and replenish if insufficient.
- 5. Open the engine oil filler cap.
- 6. Connect the tester to air pressure line and adjust the scale of tester.
- 7. Install the connecting hose to spark plug hole.

 Connect the connecting hose to tester and measure the leakage volume after blowing up compressed air.

Notice: Measure the leakage volume in the completely opening condition of throttle valve by pulling the acceleration cable.

10. Perform the pressure test according to the firing order.

Notice: Firing Order: 1-3-4-2

11. Compare the leakage pressure with the specifications.

GENERAL INFORMATION

CLEANLINESS AND CARE

An automobile engine is a combination of many machined, honed, polished and lapped surfaces with tolerances that are measured in the ten-thousanths of an inch. When any internal engine parts are serviced, care and cleanliness are important. A liberal coating of enigne oil should be applied to friction areas during assembly, to protect and lubricate the surfaces on initial operation. Proper cleaning and protection of machined surfaces and friction areas is part of the repair procedure. This is considered standard shop practice even if not specifically stated.

Whenever valve train components are removed for service, they should be kept in order. They should be installed in the same locations, and with the same mating surfaces, as when they were removed.

Battery cables should be disconnected before any major work is performed on the engine. Failure to disconnect cables may result in damage to wire harness or other electrical parts.

ON-ENGINE SERVICE

Caution: Disconnect the negative battery cable before removing or installing any electrical unit, or when a tool or equipment could easily come in contact with exposed electrical terminals. Disconnecting this cable will help prevent personal injury and damage to the vehicle. The ignition must also be in LOCK unless otherwise noted.

Notice: Any time the air cleaner is removed, the intake opening should be covered. This will protect against accidental entrance of foreign material, which could follow the intake passage into the cylinder and cause extensive damage when the engine is started.

SECTION 1B2

M161 ENGINE MECHANICAL

CAUTION: Disconnect the negative battery cable before removing or installing any electrical unit or when a tool or equipment could easily come in contact with exposed electrical terminals. Disconnecting this cable will help prevent personal injury and damage to the vehicle. The ignition must also be in LOCK unless otherwise noted.

TABLE OF CONTENTS

Specifications	1B2-2
Fastener Tightening Specifications	1B2-2
Special Tools and Equipment	1B2-4
Special Tools Table	1B2-4
Maintenance and Repair	1B2-7
On-Vehicle Service	1B2-7
Engine Assembly	1B2-7
Crankcase Ventilation System	1B2-14
Generator	1B2-18
Engine Mount	1B2-19
Poly V-Belt	1B2-20
Tensioning Device	1B2-22
Tensioning Device Shock Absorber	1B2-23
Poly V-Belt Inspection	1B2-24
Cylinder Head Cover	1B2-26
Cylinder Head Front Cover	1B2-28
Cylinder Head	1B2-30
Timing Gear Case Cover	1B2-34
Crankshaft Sealing Rear Cover	1B2-37
Belt Pulley and Vibration Damper	1B2-39
Crankshaft Front Radial Seal	1B2-42
Crankshaft Rear Radial Seal	1B2-44
Crankshaft	1B2-45
Flywheel / Driven Plate	1B2-51
Camshaft Adjuster	1B2-54

Camshaft	Sprocket Bolt	1B2-57
Camshaft		1B2-58
Camshaft	Timing Position	1B2-61
Valve Spri	ing	1B2-63
Valve Ster	m Seal	1B2-67
Chain Ten	sioner	1B2-68
Timing Ch	ain	1B2-72
Tensioning	g Rail	1B2-77
Cylinder H	lead Guide Rail	1B2-78
Crankcase	e Guide Rail	1B2-80
Cranksha	ft Sprocket	1B2-81
Piston		1B2-83
Connectin	ng Rod	1B2-86
Piston Rin	ng	1B2-88
Oil Pan		1B2-90
_	l and Oil Filter Element	
Oil Pump		1B2-94
Oil Pressu	re Relief Valve	1B2-96
	eturn Valve	
Oil Dipstic	ck Guide Tube	1B2-98
Unit Repair	·	1B2-99
Core Plug	s in Crankcase	1B2-99
Cylinder B	Bore	1B2-101
Crankcas	e Mating Surface	1B2-103
Cylinder H	lead Mating Surface	1B2-105

SPECIFICATIONS

FASTENER TIGHTENING SPECIFICATIONS

Application		N•m	Lb-Ft	Lb-In
A/C Bracket Bolt		22.5 - 27.5	16.6 - 20.3	-
Amarture Bolt in Flywheel		35	26	-
Camshaft Adjuster Flange Bolts		18 - 22	13 - 16	
		60° ± 5°	60° ± 5°	1
Camshaft Bearing Cap Bolts		22.5 - 27.5	16.6 - 20.3	-
Chain Tensioner Assembly		72 - 88	53 - 65	-
Chain Tensioner Screw Plug		40	30	-
Connecting Rod Bearing Cap Bolts		40	30	
		+90°	+90°	-
Crankshaft Bearing Cap Bolts		55/ + 90°	41/ + 90°	-
Crankshaft Sealing Rear Cover Mounti	ng Bolts	9 - 11	-	80 - 97
Cylinder Head Bolts		55	41	
		+90°	+90°	-
		+90°	+90°	
Cylinder Head Cover Bolt		9 - 11	-	80 - 97
Cylinder Head Front Cover Bolt	M8	22.5 - 27.5	16.6 - 20.3	-
	M6	9 - 11	-	80 - 97
Engine Mounting Nuts		70	52	•
Exhaust Camshaft Sprocker Bolts		18 - 22	13 - 16	
		60° ± 5°	60° ± 5°	•
Exhaust Manifold and Pipe		30	22	-
Exhaust Mainfold Nut to Stud Bolt		26 - 34	19 - 25	-
Flange Bolt to Exhaust Mainfold		30	22	•
Flywheel Mounting Bolt		45 + 5	33 + 3.7	
		90° + 10°	90° + 10°	
Fuel Feed and Return Line		21 - 25	15 - 18	-
Generator Carrier Bolt		25	18	-
Intake Air Duct Mounting Nuts		9 - 11	-	80 - 97
Intake Flange Shaft Bolts		18 - 22	113 - 16	
		60° ± 5°	60° ± 5°	-
Lower Intake Mainfold Bolt		22.5 - 27.5	16.6 - 20.3	-
Magnetic Assembly Bolt		9 - 11	-	80 - 97
Oil Dipstick Guide Tube Bolt		9 - 11	-	80 - 97
Oil Drain Plug		25	18	-
Oil Filter Bolt		22.5 - 27.5	16.6 - 20.3	-
Oil Filter Cover		25	18	-
Oil Gallery Screw Plug		15	11	-
Oil Pressure Relief Balbe Screw Plug		50	37	-
Oil Pump Drive Sprocket Bolt		29 - 35	21 - 26	-
Oil Pump Mounting Bolt		22.5 - 27.5	16.6 - 20.3	-

FASTENER TIGHTENING SPECIFICATIONS (Cont'd)

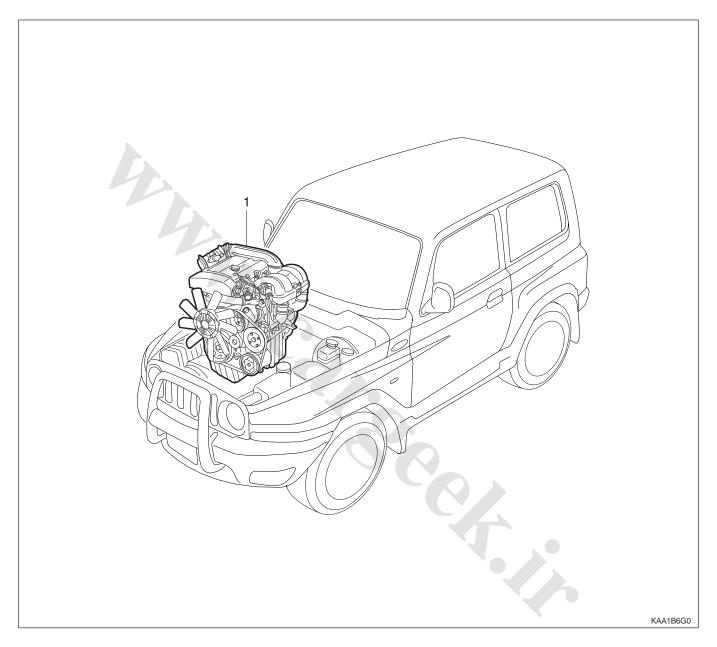
Application	N•m	Lb-Ft	Lb-In
Oil Pump Sprocket Bolt	29 - 35	21 - 26	-
Oil Strainer Bracket Bolt	9 - 11	-	89 - 97
Shock Absorber Bolts	22.5 - 27.5	16.6 - 20.3	-
Spark Plug Cover Bolts	9 - 11	-	80 - 97
Steering Pump Bolts	22.5 - 27.5	16.6 - 20.3	-
Tensioning Device Bolts	26 - 32	19 - 24	-
Tensioning Pulley Bolt	40.5 - 49.5	29.9 - 36.5	-
Timing Gear Case Cover Bolts	22.5 - 27.5	16.6 - 20.3	-
Torque Converter Mounting Bolts	42	31	-
Upper Intake Manifold Bolt	22.5 - 27.5	16.6 - 20.3	-
Vibration Damper Center Bolt	200 + 20	148 + 15	
	+90° + 10°	+90° + 10°	-
Water Pump Pulley Bolts	22.5 - 27.5	16.6 - 20.3	-

SPECIAL TOOLS AND EQUIPMENT

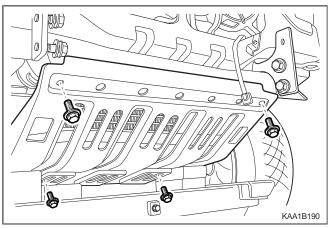
SPECIAL TOOLS TABLE

KAA1B010	000 589 58 43 00 Chain Assembly	KAA1B050	103 589 02 09 00 Oil Filter Remover
KAA1B020	111 589 01 59 00 Supporting Bar	KAA1B070	111 589 25 63 00 Thrust Piece
KAA1B030	111 589 18 61 00 Lever Pusher	KAA1B080	116 589 20 33 00 Sliding Hammer
KAA1B040	116 589 01 34 00 Threaded Pin	KAA1B090	119 589 00 43 00 Drift

Special Tools Table (Cont'd)


KAA1B100	601 589 03 14 00 Crankshaft Front Seal Installer		KAA1B140	602 589 00 40 00 Engine Lock
KAA1B110	603 589 00 40 00 Fan Clutch Holder		KAA1B150	617 589 00 10 00 Allen Wrench Socket
KAA1B120	615 589 01 33 00 Crankshaft Sprocket Puller	4	KAA1B160	DW110 - 090 Connecting Hose
KAA1B130	601 589 03 43 00 Crankshaft Rear Seal Installer		KAA1B170	DW110 - 100 Valve Tappet Remover

Special Tools Table (Cont'd)

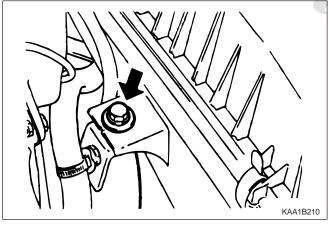


MAINTENANCE AND REPAIR ON-VEHICLE SERVICE

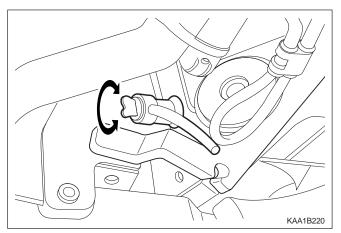
ENGINE ASSEMBLY

1 Engine Assembly (E23 Engine)

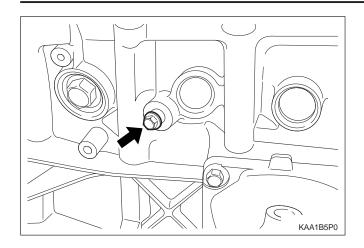
Removal & Installation Procedure


- 1. Disconnect the negative terminal of battery.
- 2. Remove the hood.
- 3. Remove the under cover.

Installation Notice


Tightening Torque	28 - 47 N•m
	(21 - 35 lb-ft)

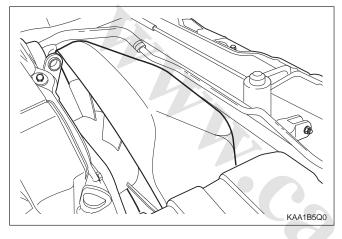
4. Disconnect the coupling of HFM sensor and remove the air cleaner cross pipe.



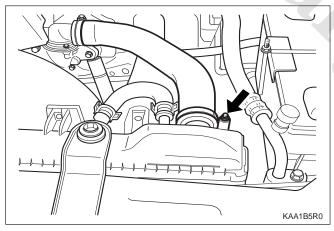
5. Remove the air cleaner cover. Remove the mounting bolts and air cleaner housing and element assembly.

6. Loosen the radiator drain cock and drain the coolant.

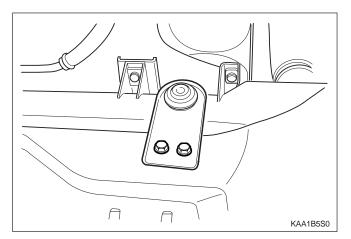
Notice: Open the coolant reservoir cap.



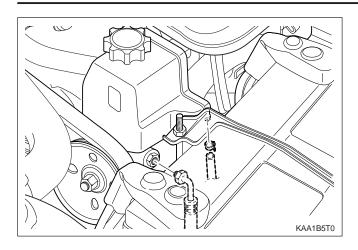
7. Loosen the cylinder block drain plug and then drain the coolant completely.


Installation Notice

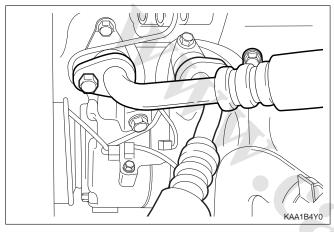
Tightening Torque	5 N•m (26 lb-ft)
-------------------	------------------


Notice: Replace the seal before installation of the drain plug.

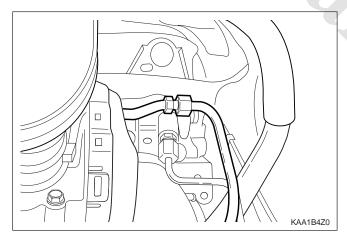
8. Remove the cooling fan shroud. Refer to Section 1D2, Engine Cooling.



9. Disconnect the each hose from radiator.


10. Remove the upper mounting bolts of radiator and then remove the radiator.

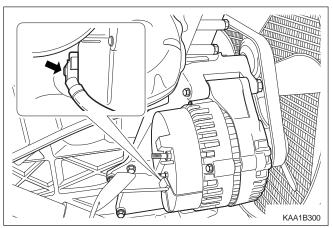
1B2-10 M161 ENGINE MECHANICAwww.CarGeek.ir



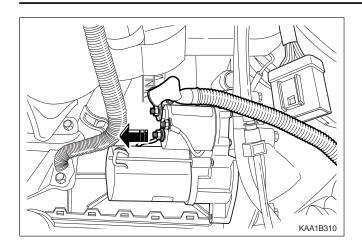
11. Remove the hydraulic pipe of power steering.

Notice: Completely drain the oil.

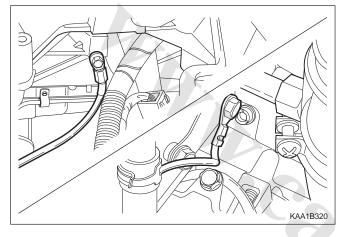
12. Discharge the refrigerant from A/C system, and disconnect the discharge pipe and suction pipe from the compressor.

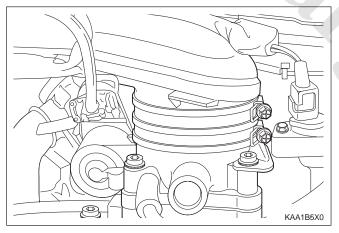


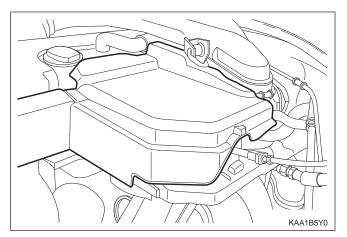
13. Remove the fuel feed and return line.


Notice: Before removing the fuel lines, release the pressure in the fuel system.

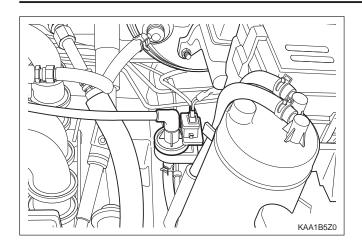
Installation Notice


Tightening Torque	21 - 25 N•m
	(15 - 18 lb-ft)

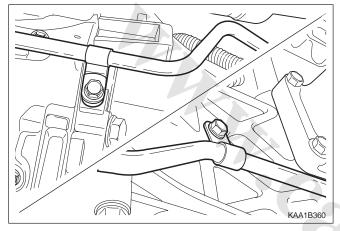

14. Disconnect the terminals from the generator.


- 15. Disconnect the terminals from starter motor and remove the starter motor.
- 16. Disconnect the engine main harness ground.

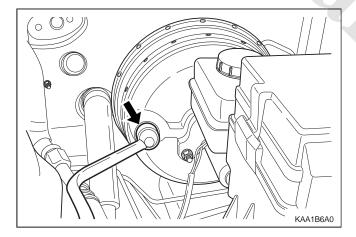
17. Disconnect the engine ground wire.

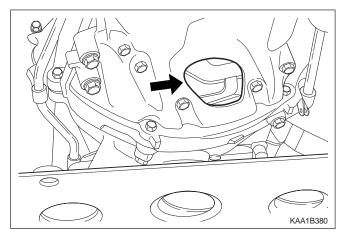


- 18. Disconnect following sensors connector.
 - HFM sensor.
 - · Coolant temperature sensor.
 - Knock sensor.
 - Camshaft and crankshaft sensors.

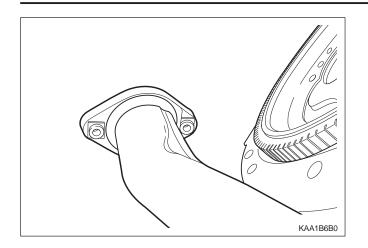


- 19. After removing the ignition coil cover, disconnect the ignition coil connector.
- 20. Remove the harness cover and disconnect the 4 injection valve connectors. Disconnect the main harness.


1B2-12 M161 ENGINE MECHANICAWww.CarGeek.ir

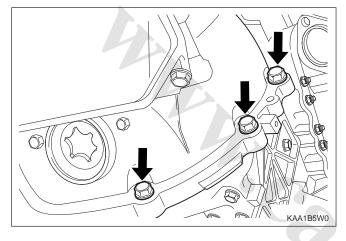

21. Separate the hose toward engine from canister purge solenoid valve and canister. Refer to Section 1F2, Engine Control.

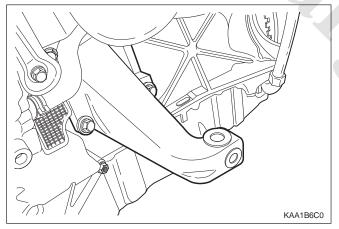
- 22. Remove the automatic transmission oil cooler line retaining bolts from the automatic transmission side and oil pan side.
- 23. Remove the automatic transmission oil cooler line retaining bolts from engine side and oil pan side.


- 24. Separate the vacuum hose for brake booster.
- 25. Separate the other vacuum hoses.

26. By rotating the crankshaft from the front of engine, remove the 6 torque converter mounting bolts from the engine ring gear plate.

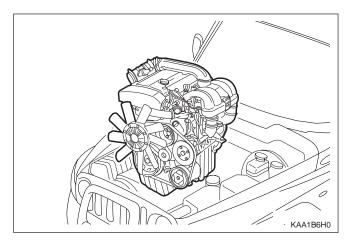
Installation Notice


Tightening Torque	42 N•m (31 lb-ft)


27. Remove the exhaust manifold and exhaust pipe.

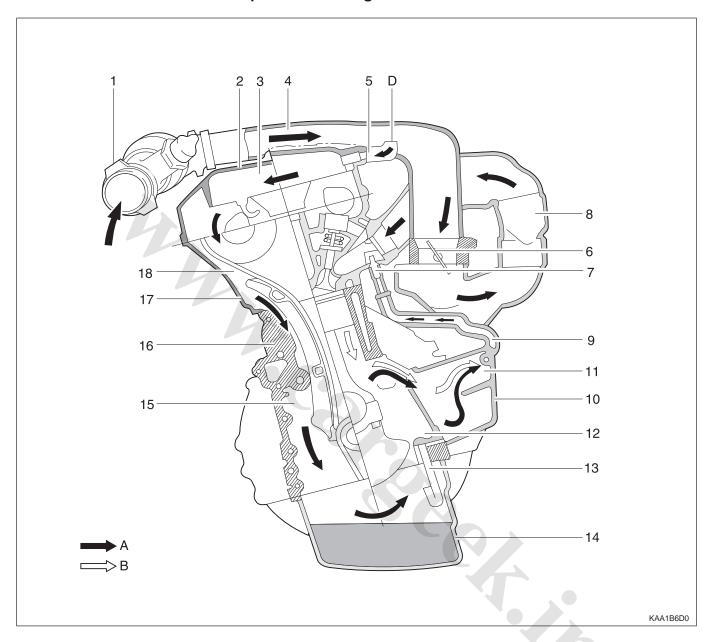
Installation Notice

Tightening Torque 30 N•m (22 lb-ft)


28. Remove the transmission. Refer to *Section 5A*, *Automatic Transmission*.

- 29. Install a chain to the bracket of engine, by using a hoist or crane.
- 30. Remove the engine mount nuts.

Installation Notice


Tightening Torque	70 N•m (52 lb-ft)
3	(/

- 31. Carefully separate the engine assembly from the vehicle.
- 32. Installation should follow the removal procedure in the reverse order.

CRANKCASE VENTILATION SYSTEM

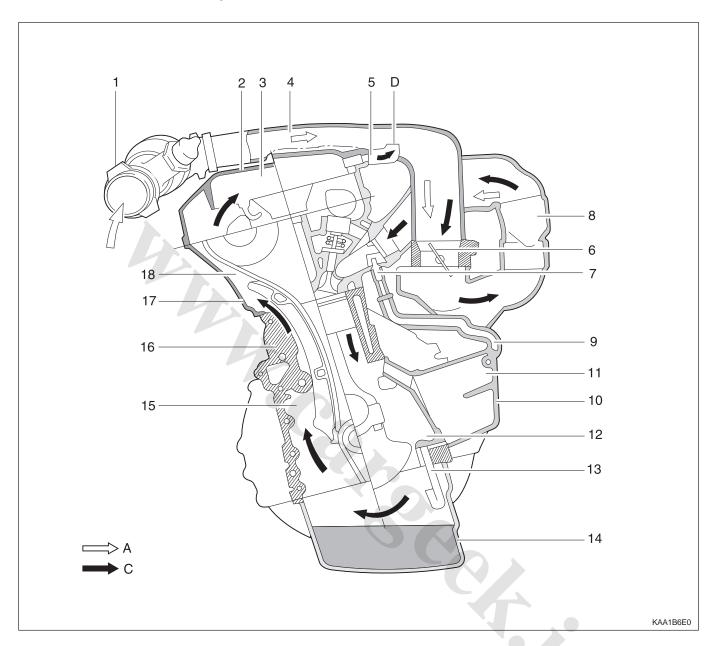
Operation at Idling and Mid-Load

- 1 HFM Sensor
- 2 Cylinder Head Cover
- 3 Oil Spearation Chamber (Full-Load or Over Mid-Load)
- 4 Intake Air Duct (Cross Pipe)
- 5 Vent Line (Full-Load or Over Mid-Load)
- 6 Throttle Valve
- 7 Restrictor, Diameter 1.1 mm (Mid-Load at Idling)
- 8 Intake Manifold
- 9 Vent Line (Mid-Load at Idling)
- 10 Air Conditioner Bracket

- 11 Oil Separation Chamber (Mid-Load at Idling)
- 12 Crank Chamber
- 13 Oil Return Pipe
- 14 Oil Pan
- 15 Timing Gear Case Cover
- 16 Crankcase
- 17 Chain Housing
- A Fresh Air
- B Blow-By Gas
- D Vent Connection

Operation at Idling and Mid-Load

• The throttle valve (6) is closed or very partially opened, and the vacuum pressure in intake manifold is high.


The blow-by gas and the fresh air that is additionally supplied through the vent connection (D) in the crank-case in partial load gets supplied to the combustion chamber from the crank chamber (12) through the oil separation chamber (11), airconditioner bracket (10), vent line (9), and restrictor (7) mounted to the cylinder head.

The circulated engine oil returns to the oil pan through the oil return pipe (13) at the bottom of oil separation chamber (11).

The fresh air gets supplied to the crank chamber (12) through the HFM sensor (1), intake air duct (4), vent line (5), oil separation chamber (3), chain housing (17), and the timing gear case cover (15).

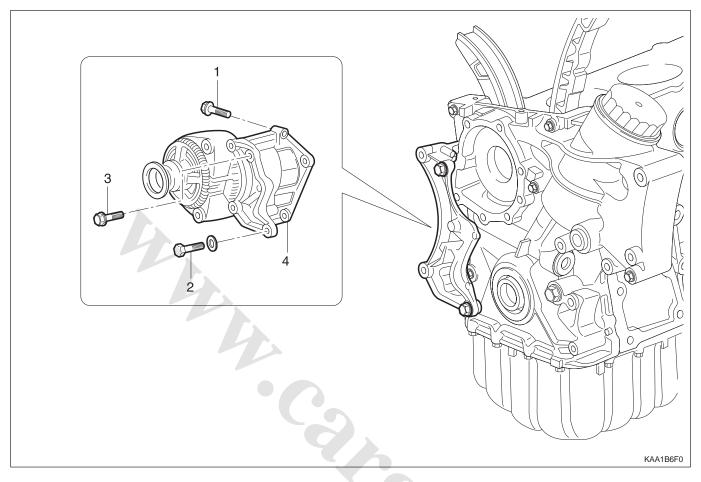
The additional supply of the fresh air is needed to prevent from forming the residues of the engine oil.

Operation When Full-Load at Partial Load

- 1 HFM Sensor
- 2 Cylinder Head Cover
- Oil Spearation Chamber (Full-Load or Over Mid-Load)
- 4 Intake Air Duct (Cross Pipe)
- 5 Vent Line (Full-Load or Over Mid-Load)
- 6 Throttle Valve
- 7 Restrictor, Diameter 1.1 mm (Mid-Load at Idling)
- 8 Intake Manifold
- 9 Vent Line (Mid-Load at Idling)
- 10 Air Conditioner Bracket

- 11 Oil Separation Chamber (Mid-Load at Idling)
- 12 Crank Chamber
- 13 Oil Return Pipe
- 14 Oil Pan
- 15 Timing Gear Case Cover
- 16 Crankcase
- 17 Chain Housing
- A Fresh Air
- C Blow-By Gas
- D Vent Connection

Operation When Full-Load at Partial Load


• The throttle valve (6) is partially opened or fully opened.

The air flows very rapidly through the vent line (5) s connection (D) and the intake air duct when full load at partial load.

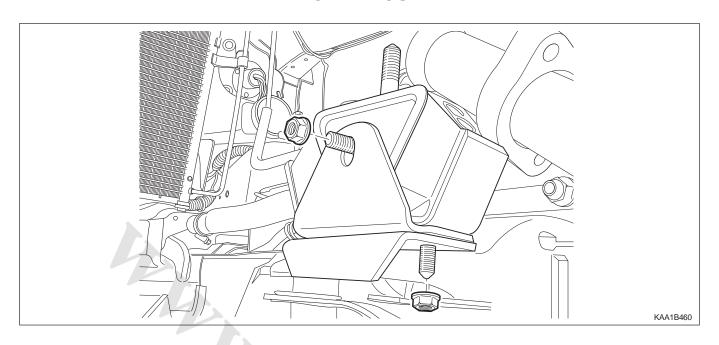
Consequently, most of the low-by gases are supplied to the combustion chamber through the timing gear case cover (15), chain housing (17), oil separation chamber (3), vent line (5), throttle valve Aanin (6), and intake manifold (8).

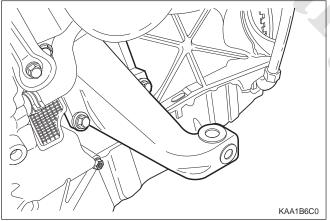
GENERATOR

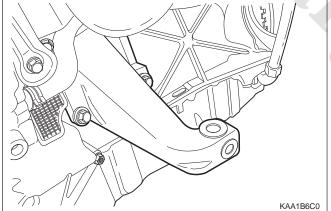
- 3 Bolt (M8 X 85, 1 piece)22.5 - 27.5 N•m (16.6 - 20.3 lb-ft)
- 4 Generator Bracket

Removal & Installation Procedure

- 1. Disconnect the negative battery cable.
- 2. Remove the drive belt.
- 3. Remove the generator.
- 4. Unscrew the generator carrier bolts and remove the carrier.


Installation Notice


Tightening Torque	25 N•m (18 lb-ft)
-------------------	-------------------


Notice: Apply 3 Nm of torque when mounting the bolt (1); apply 25 Nm of torque when mounting the bolts (2), and (3); and then tighten the bolt (1) with 25 Nm of torque.

5. Installation should follow the removal procedure in the reverse order.

ENGINE MOUNT

KAA1B470

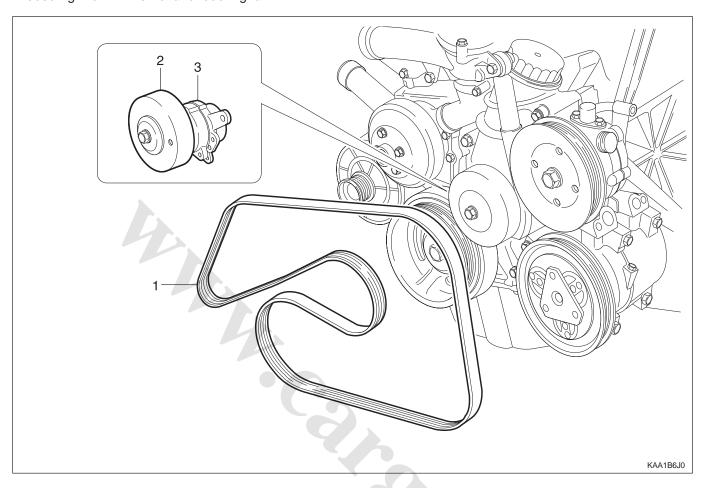
Removal & Installation Procedure

1. Unscrew the upper engine mount nuts and remove the engine.

Installation Notice

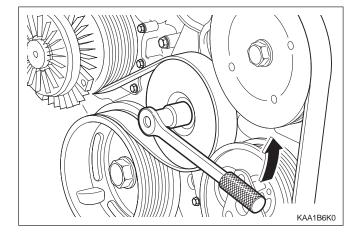
Tightening Torque	70 N•m (52 lb-ft)
-------------------	-------------------

2. Unscrew the lower nuts.


Installation Notice

Tightening Torque	38 N•m (28 lb-ft)
-------------------	-------------------

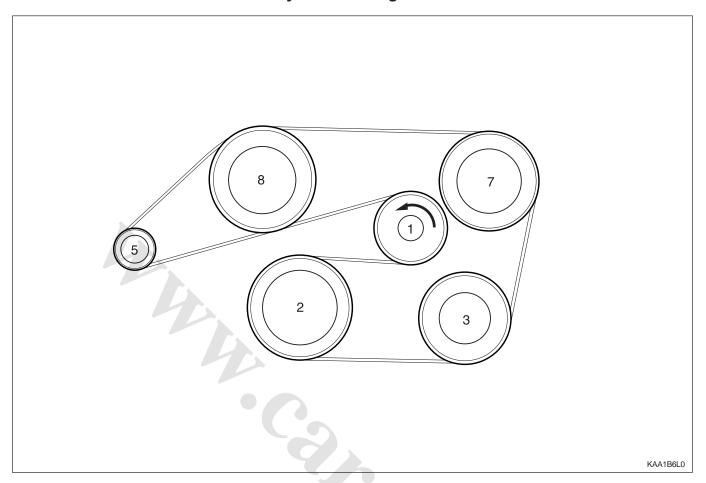
- 3. Remove the hydraulic engine mounting insulator.
- 4. Installation should follow the removal procedure in the reverse order.


POLY V-BELT

Preceding Work: Removal of cooling fan

- 1 Poly V-Belt (2,155 mm)
- 2 Belt Tensioning Pulley

3 Belt Tensioner

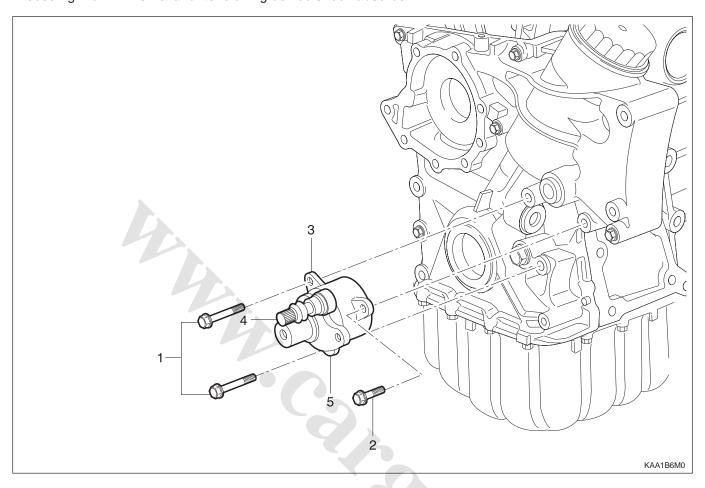

Removal & Installation Procedure

- Release the belt tension by turning the stud on the cap with 12 sided wrench or spanner counterclock-wise.
- 2. Remove the poly v-belt.

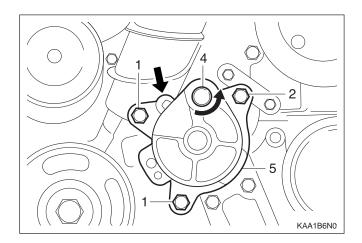
Notice: Check the belt for damage and tensioning pulley bearing point for wear and replace them if necessary.

3. Install the belt after prying the tensioning pulley.

Poly V-Belt Arrangement



- 1 Belt Tensioning Pulley
- 2 Crankshaft Belt Pulley
- 3 A/C Compressor Pulley

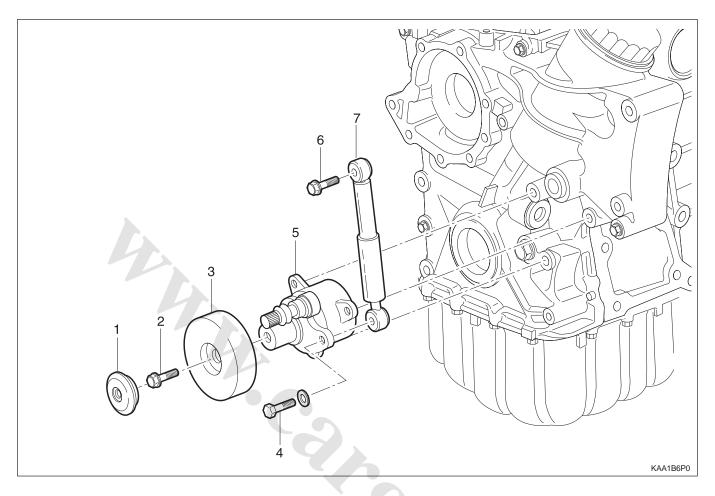

- 5 Generator Pulley
- 7 Power Steering Pump Pulley
- 8 Water Pump Pulley

TENSIONING DEVICE

Preceding Work: Removal of tensioning device shock absorber

- 1 Bolt (M8 x 75, 2 pieces) + Washer22.5 27.5 N•m (16.6 0.3 lb-ft)
- 2 Bolt (M8 x 25, 1 pieces) + Washer 22.5 27.5 N•m (16.6 0.3 lb-ft)
- 3 Tensioning Device
- 4 Stud bolt
- 5 Tensioning Arm

Removal & Installation Procedure


- 1. Turn the stud bolt to counterclockwise.
- 2. Insert the pin (111 589 01 15 00) into the hole in tensioning arm.
- 3. Unscrew the bolts (1, 2) and remove the tensioning device.

Installation Notice

Tightening Torque	22.5 - 27.5 N•m
	(16.6 - 20.3 lb-ft)

4. Installation should follow the removal procedure in the reverse order.

TENSIONING DEVICE SHOCK ABSORBER

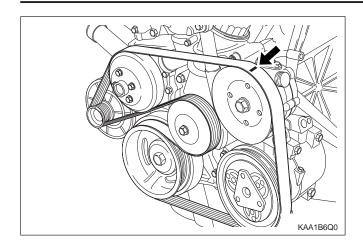
- 1 End Cover
- 3 Tensioning Pulley
- 5 Tensioning Device
- 6 Bolt (M8 X 35) + Washer

...... 22.5 - 7.5 N•m (16.6 - 0.3 lb-ft)

7 Shock Absorber

Removal & Installation Procedure

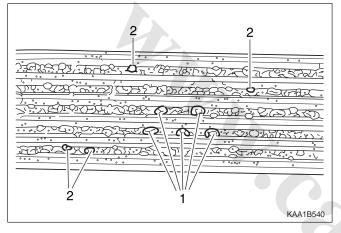
- 1. Remove the end cover (1).
- 2. Remove the bolt (2) and remove the tensioning pulley (3).

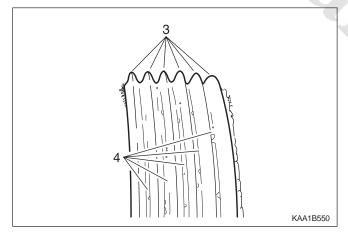

Installation Notice

Tightening Torque	40.5 - 49.5 N•m (29.9 - 36.5 lb-ft)
	(29.9 - 30.3 10-11)

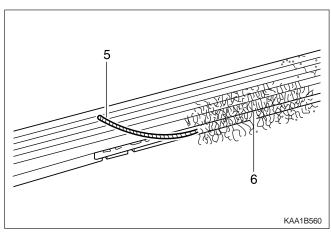
3. Unscrew the bolts (4,6) and remove the shock absorber (7).

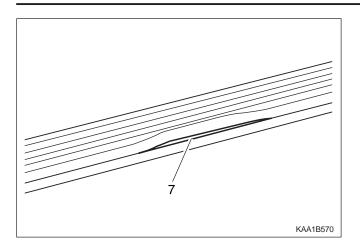
Installation Notice

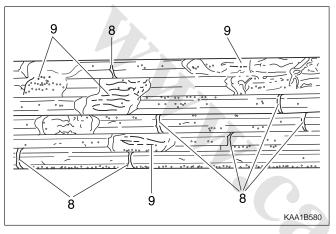

Tightening Torque	22.5 - 27.5 N•m (16.6 - 20.3 lb-ft)


POLY V-BELT INSPECTION

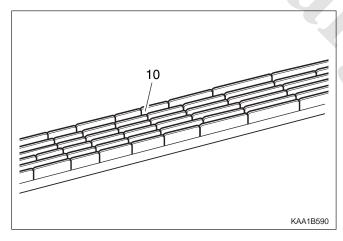
- Make marks on the belt with chalk.
- Rotate the engine and check the belt for damage.


Notice: If one of the following types of damages is found, replace the belt.

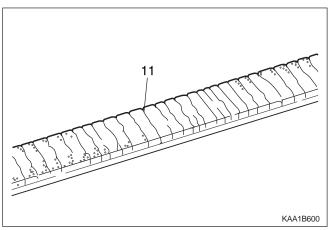

- 1. Rubber lumps in the base of rib.
- 2. Dirt or grit ingrained.


- 3. Pointed rib.
- 4. Belt cord visible in the base of rib.

- 5. Cord torn out at the side.
- 6. Outer cords frayed.

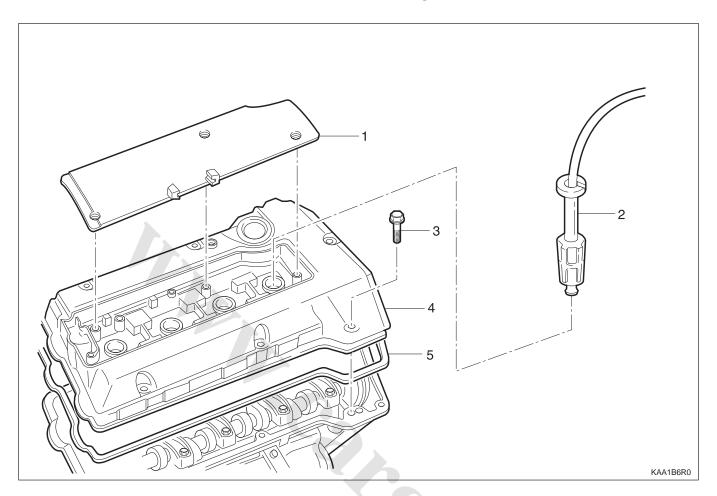


7. Rib detached from the base of belt.

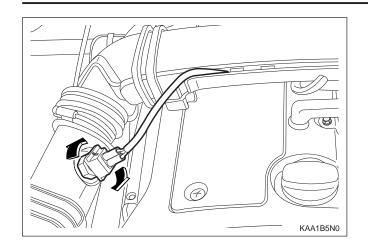


8. Splits across the rib.

9. Sections of rib torn out.

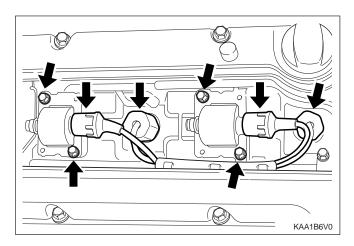


10. Splits across several ribs.



11. Splits across the back of the belt.

CYLINDER HEAD COVER



- 1 Spark Plug Cover
- 2 Spark Plug Connector
- 3 Bolt (M6 X 45 : 4 pieces, M6 X 60 : 6 pieces) 9 11 N•m (80 97 lb-in)
- 4 Cylinder Head Cover
- 5 Gasket..... Replace

KAA1B5X0

KAA1B6U0

Removal & Installation Procedure

1. Remove the intake air duct.

Installation Notice

Tightening Torque	9 - 11 N•m
rigitterinig rorque	(80 - 97 lb-ft)

2. Remove the spark plug cover.

Installation Notice

	9 - 11 N•m
Tightening Torque	(80 - 97 lb-ft)

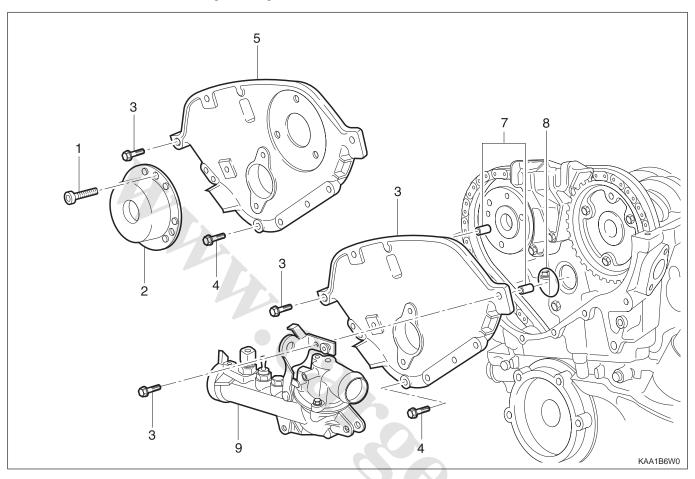
Notice: Release 3 screws from the spark plug cover and remove the cover for M161 Engine coil.

- 3. Remove the spark plug connector and ignition cable.
- 4. Unscrew the bolts (3) and remove the head cover and the gasket.

Installation Notice

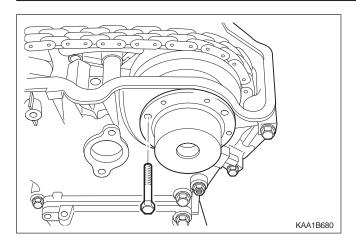
Tightening Torque	9 - 11 N•m (80 - 97 lb-ft)
-------------------	-------------------------------

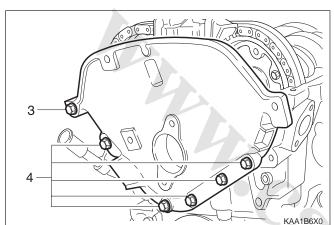
Notice: Replace the gasket with a new one if necessary.


- 5. Installation should follow the removal procedure in the reverse order.
- 6. Check for oil leaks by operating the engine.

CYLINDER HEAD FRONT COVER

Preceding Work: Removal of cylinder head cover


Removal of thermostat housing assembly


Removal of engine hanger bracket

- 2 Camshaft Adjuster

- 5 Front Cover (E23: M161.973)
- 7 Sleeve
- 8 O-ring Replace
- 9 Thermostat Housing.

Removal & Installation Procedure

1. Disconnect the camshaft adjuster connector and remove the camshaft adjuster.

Installation Notice

Tightening Torque	9 - 11 N•m
rigittering rorque	(80 - 97 lb-ft)

2. Remove the cylinder head front cover.

Installation Notice

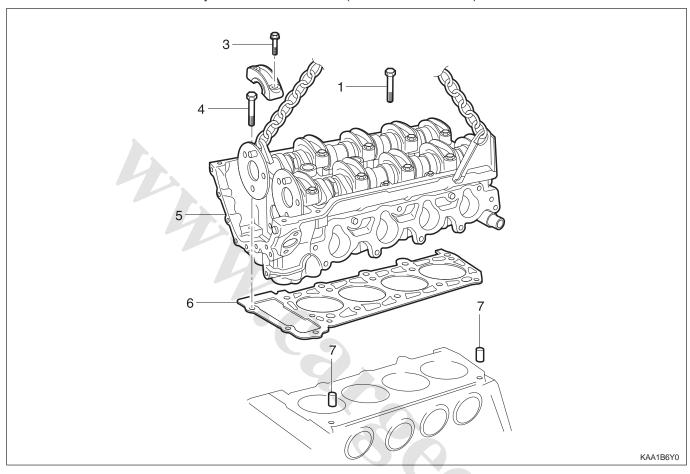
Tightening Torque (3)	22.5 - 27.5 N•m (16.6 - 20.3 lb-ft)
Tightening	9 - 11 N•m
Torque (4)	(80 - 97 lb-in)

Apply the sealant at the mating surface of the cylinder head and the front cover.

3. Remove the O-ring.

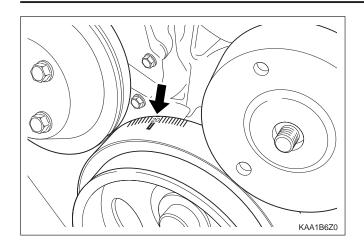
Notice: Replace the O-ring with new one and apply the sealant.

4. Installation should follow the removal procedure in the reverse order.


CYLINDER HEAD

Preceding Work: Removal of cylinder head cover

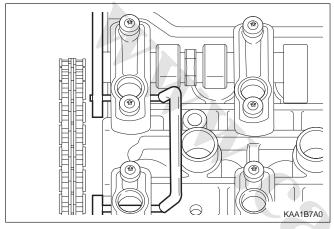
Removal of cylinder head front cover


Removal of intake manifold

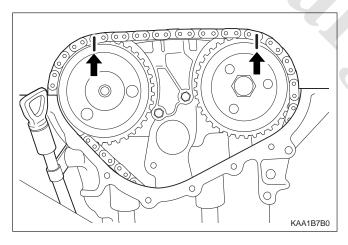
Removal of cylinder head lower line (intake manifold side)

1	Cylinder Head Bolt (M12 X 100, 10 pieces)
	1ststep 55 N•m (41 lb-ft)
	2nd step 90° rotation added
	3rd step 90° rotation added
2	Dolt (MO V 25 4 piggs)

- 4 Camshaft Bearing cap
- 5 Cylinder Head
- 6 Gasket Replace
- 7 Dowel Sleeve Note

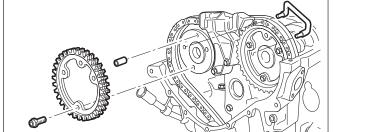


Tools Required


617 589 00 10 00 Allen Wrench Socket 116 589 20 33 00 Sliding Hammer 116 589 01 34 00 Threaded Pin 111 589 03 15 00 Holding Pin

Removal & Installation Procedure

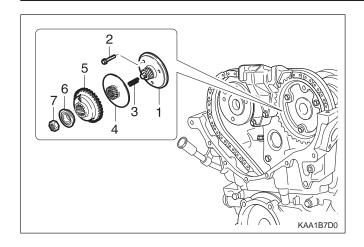
1. Rotate the crankshaft so that the piston of number 1 cylinder is at ATDC 20.


2. Put the holding pin 111 589 03 15 00 into the camshaft bearing cap.

- 3. Put the alignment marks (arrows) on the timing chain and camshaft sprocket.
- 4. Remove the chain tensioner.

Installation Notice

Tightening Torque	72 - 88 N•m
rightening rorque	(53 - 65 lb-ft)

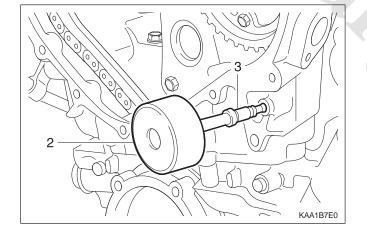

5. Remove the exhaust camshaft sprocket.

Installation Notice

Tightening Torque	1st step :18 - 22 N•m (13 - 16 lb-ft)
	2nd step:60° ± 5°

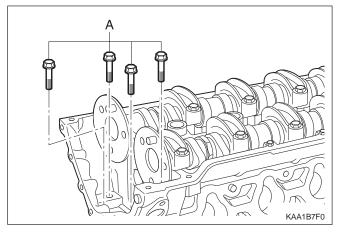
Notice: The flange bolt is designed to be used only once, so always replace with new one.

KAA1B7C0


6. Remove the camshaft adjuster.

Installation Notice (Flange Bolt)

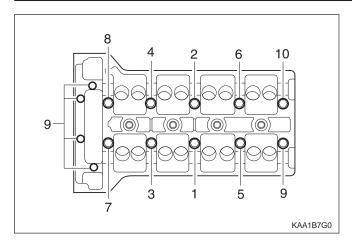
	1st step :18 - 22 N•m
Tightening Torque	(13 - 16 lb-ft)
	2nd step:60° ± 5°


Notice: The flange bolt is designed to be used only once, so always replace with new one.

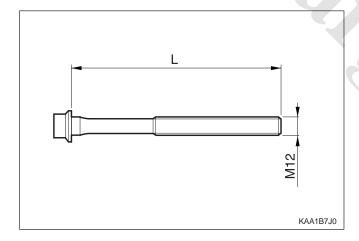
- 1 Flange Shaft
- 2 Flange Bolt
- 3 Compression Spring
- 4 Adjust Piston
- 5 Camshaft Sprocket
- 6 Seal Cover
- 7 Nut

7. Remove the guide rail pin using the sliding hammer 116 589 20 33 00 (02) and the threaded pin 116 589 01 34 00 (03).

Notice: Apply the sealant on guide rail pin when installation.




8. Unscrew the bolts (A).


Installation Notice

Tightening Torque	22.5 - 27.5 N•m (16.6 - 20.3 lb-ft)
-------------------	--

Bolt (A): (M8 X 35, 4 pieces)

 Remove the cylinder head bolts in the reverse order of the numerics (No.10 → No.1) using allen wrench socket 617 589 00 10 00.

Installation Notice

Tighten the bolts as numerical order with specified torque (No. $1 \rightarrow$ No. 10).

	1st step: 55 N•m (41 lb-ft)
Tightening Torque	2nd step: +90°
	3rd step: +90°

Notice: Operate during engine cooling.

10. Remove the bearing cap of the exhaust cam-shaft.

Installation Notice

Tightening Torque	22.5 - 27.5 N•m
rigintering rorqu	(16.6 - 20.3 lb-ft)

- 11. Carefully remove the cylinder head.
- 12. Check the cylinder head mating surface and clean the crankcase head bolt mounting hole.
- 13. Replace the cylinder head gasket with new one.

14. Check the length of the cylinder head bolt.

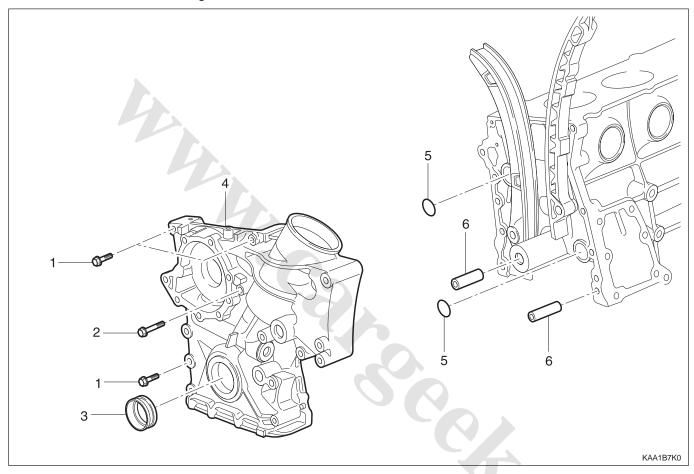
Installation Notice

Length (L)	When New 100 mm
Lengur (L)	Max. Length 105 mm

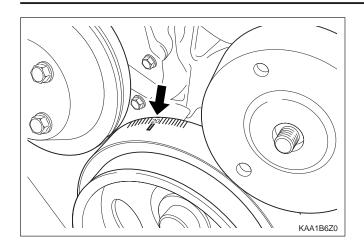
Notice: Replace the bolt if the measured length exceed the max. length.

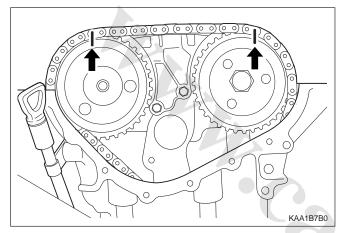
15. Installation should follow the removal procedure in the reverse order.

TIMING GEAR CASE COVER


Preceding Work: Removal of viscous clutch

Removal of cylinder head front cover


Removal of tensioning device Removal of water pump Removal of oil filter element


Removal of oil pan

Removal of generator bracket

- 1 Bolt (M8 X 60, 3 pieces)
 - 22.5 27.5 N•m (16.6 20.3 lb-ft)
- 2 Bolt (M8 X 75, 1 piece)
 - 22.5 27.5 N•m (16.6 20.3 lb-ft)
- 3 Seal
- 4 Timing Gear Case Cover
- 5 O-ring
- 6 Sleeve.

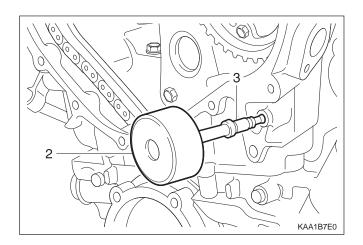
Tools Required

116 589 20 33 00 Sliding Hammer 116 589 01 34 00 Threaded Pin

Removal & Installation Procedure

- Remove the power steering belt pulley and A/C compressor bracket.
- 2. Remove the oil line from power steering pump.
- 3. Rotate the crankshaft so that the piston of number, cylinder is at ATDC 20 °.
- 4. Put the alignment marks (arrows) on the timing chain and camshaft sprocket.
- 5. Remove the chain tensioner.

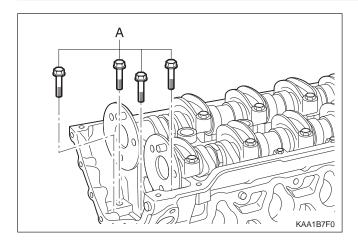
Installation Notice


Tightening Torque	72 - 88 N•m	
	(53 - 65 lb-ft)	

6. Remove the intake and exhaust camshaft sprocket (remove the camshaft adjuster assembly in E23 engine).

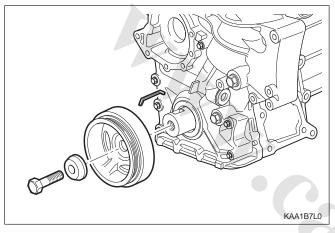
Installation Notice

	1st step :18 - 22 N•m
Tightening Torque	(13 - 16 lb-ft)
	2nd step:60° ± 5°


Notice: The flange bolt is designed to be used only once, so always replace with new one.

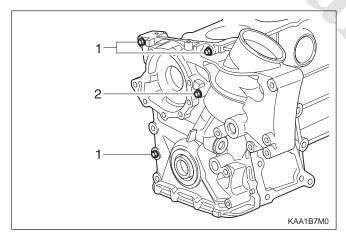
7. Remove the guide rail pin using the sliding hammer 116 589 20 33 00 (02) and the threaded pin 116 589 01 34 00 (03).

Notice: Apply the sealant on guide rail pin when installation.


1B2-36 M161 ENGINE MECHANICAwww.CarGeek.ir

8. Unscrew the bolts (A).

Installation Notice


Tightening Torque	22.5 - 27.5 N•m (16.6 - 20.3 lb-ft)
	(10.0 20.0 10 11)

9. Remove the belt pulley and vibration damper.

Installation Notice (Center Bolt)

	1st step	: 200 + 20 N•m
Tightening Torque		(148 +15 lb-ft)
	2nd step : 90° ± 10°	

10. Unscrew the bolts (1, 2) on timing gear case cover and remove the timing gear case cover.

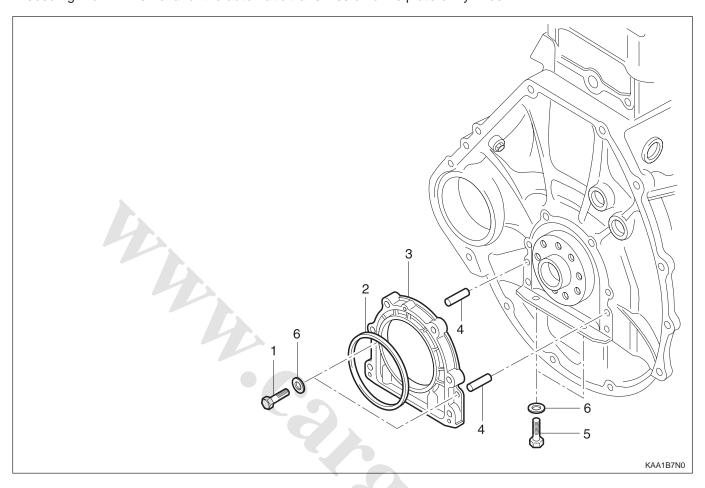
Installation Notice

Tightening Torque	22.5 - 27.5 N•m (16.6 - 20.3 lb-ft)
-------------------	--

Notice: Be careful not to damage the cylinder head gasket.

11. Remove the radial shaft seal.

Notice: Installation note replace the seal with new one.

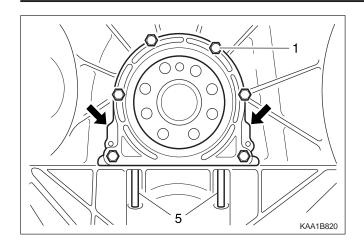

- 12. Clean the timing gear case cover and crankcase sealing surface.
- 13. Replace the O-ring with new one and apply the sealant on the sealing surface.

Notice: Be careful not to stain the oil chamber of chain tensioner with the sealant.

- 14. Installation should follow the removal precedure in the reverse order.
- 15. Warm up the engine and check for oil leaks.

CRANKSHAFT SEALING REAR COVER

Preceding Work: Removal of the automatic transmission drive plate or flywheel

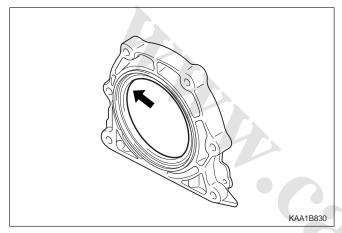

1	Bolt (M6 x 20, 6 pieces)
	9 - 11 N•m (80 - 97 lb-in)

- 2 Radial Shaft Seal
- 3 Rear Cover

- 4 Sleeve
- 5 Bolt (M6 x 85, 2 pieces)

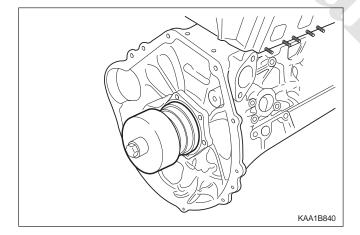
...... 9 - 11 N•m (80 - 97 lb-in)

6 Washer

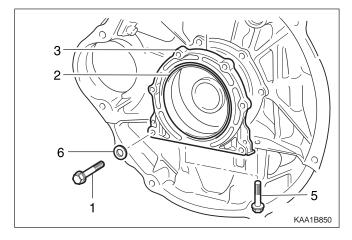

Tools Required

601 589 03 43 00 Crankshaft Rear Seal Installer

Removal & Installation Procedure


1. Unscrew the bolts (1) and (5) and remove the closing cover by pulling the rear cover lug (arrows).

Notice: Be careful not to damage the oil pan gasket.



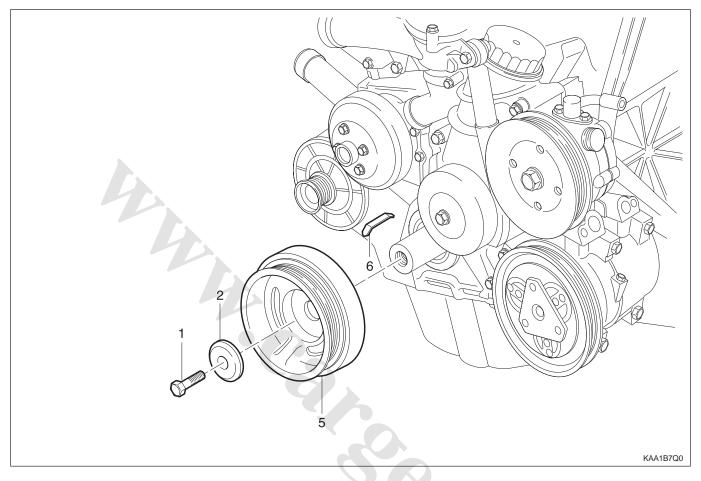
- 2. Clean the sealing surface of the crankcase and the rear sealing cover.
- 3. Check the radial shaft seal and replace it if necessary.
- 4. Apply the Loctite 573 to the rear cover sealing surface.
- 5. Apply the engine oil to the dust lip of the radial shaft seal.

Notice: Do not use the grease.

6. Install the crankshaft rear radial seal and the crankshaft sealing rear cover, using crankshaft rear seal installer 601 589 03 43 00.

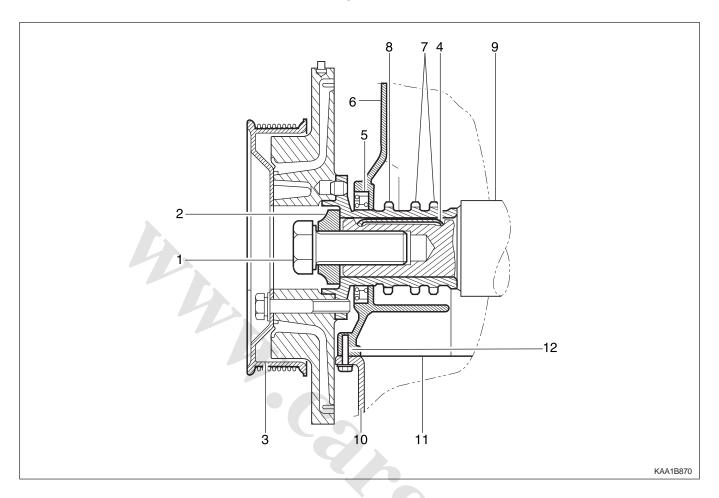
7. Install the crankshaft sealing rear cover mounting bolts and remove the crankshaft rear seal installer 601 589 03 43 00.

Installation Notice


Tightening Torque	9 - 11 N•m	
	(80 - 97 lb-ft)	

8. Installation should follow the removal procedure in the reverse order.

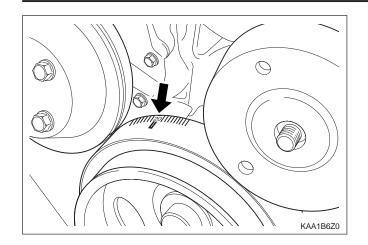
BELT PULLEY AND VIBRATION DAMPER


Preceding Work: Removal of cooling fan and viscous clutch

Removal of fan shroud Removal of drive belt

- 2 Vibration Damper Disk
- 5 Vibration Damper Assembly
- 6 Key

Components

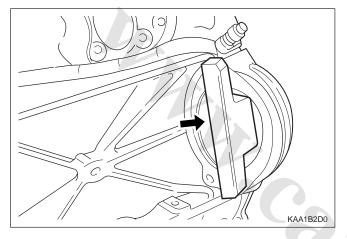


- 1 Center Bolt (M18 x 50)
- 2 Center Bolt Washer
- 3 Vibration Damper and Pulley Assembly
- 4 Key
- 5 Crankshaft Front Seal
- 6 Timing Gear Case Cover

- 7 Crankshaft Sprocket (Camshaft Driven)
- 8 Crankshaft Sprocket (Oil Pump Driven)
- 9 Crankshaft
- 10 Oil Pan
- 11 Oil Pan Gasket
- 12 Oil Pan Mounting Bolt (M6 x 22)

Service Data Standard

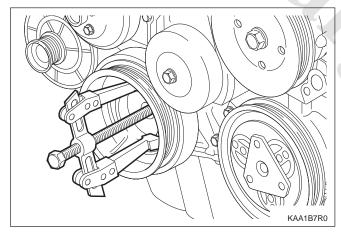
Permissble Deviation of The Vibration Damper	Radial Runout	0.6 mm
	Axial Ruout	0.6 mm



Tools Required

602 589 00 40 00 Engine Lock

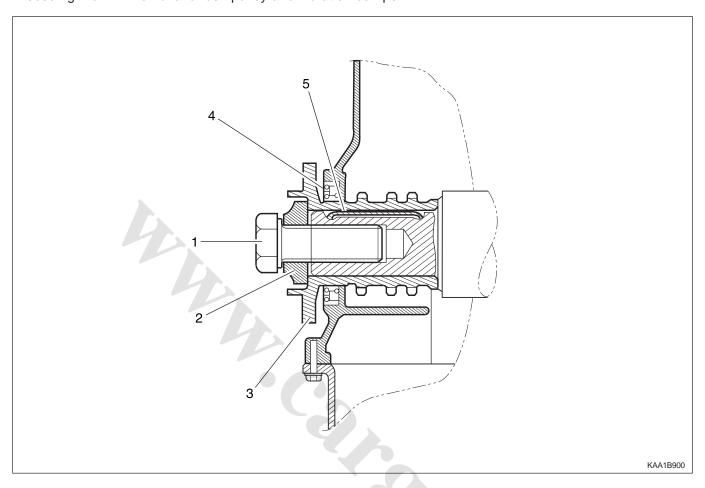
Removal & Installation Procedure


1. Adjust the piston of number 1 cylinder to the TDC.

- 2. Remove the start motor and install the engine lock 602 589 00 40 00 to the flywheel ring gear.
- 3. Remove the vibration damper center bolt.

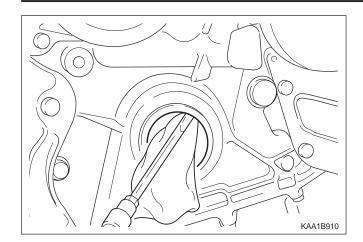
Installation Notice

	1st step: 200 + 20 N•m
Tightening Torque	(148 + 15 lb-ft)
	2nd step: 90° + 10°



- 4. Remove the vibration damper assembly using the puller.
- 5. Installation should follow the removal procedure in the reverse order.

Notice: If possible, don't separate the vibration damper and the pulley.


CRANKSHAFT FRONT RADIAL SEAL

Preceding Work: Removal of belt pulley and vibration damper

- 1 Center Bolt (M18 x 50) 1st step 200 + 20 N•m (148 +15 lb-ft) 2nd step 90 ° + 10 °
- 2 Center Bolt Washer

- 3 Crankshaft Front Seal Installer
- 4 Crankshaft Front Seal
- 5 Key

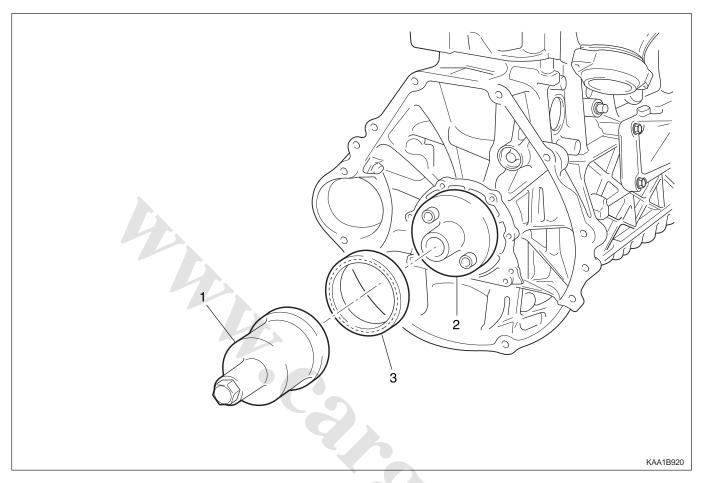
Tools Required

601 589 03 14 00 Crankshaft Front Seal Installer

Replacement Procedure

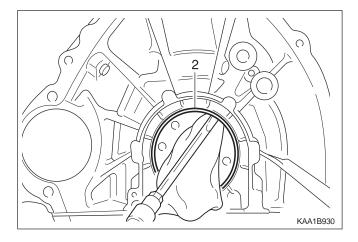
1. Remove the radial seal with a screw driver.

Notice: Use a clean cloth not to damage the radial seal mounting hole and the crankshaft.


- 2. Coat the radial sealing lip with engine oil.
- 3. Using the crankshaft front seal installer 601 589 03 14 00, assemble the radial seal.
- 4. Align the sleeve groove and the woodruff key and tighten the center bolt until the center bolt and the damper disk stop in the movement.

^	the damper disk stop in	the movement.
	Installation Notice	
	Tightening Torque	1st step: 200 + 20 N•m (148 + 15 lb-ft)
		2nd step: 90° ± 10°
	 Remove the crankshaft f 03 14 00, and install vibration damper. 	ront seal installer 601 589 the belt pulley and the
	6. Check for leaks while or	perating the engine.

- 5. Remove the crankshaft front seal installer 601 589 03 14 00, and install the belt pulley and the
- 6. Check for leaks while operating the engine.


CRANKSHAFT REAR RADIAL SEAL

Preceding Work: Removal of flywheel or drive plate

- 1 Special Tool
- 2 Special Tool

3 Crankshaft Rear Seal

Tools Required

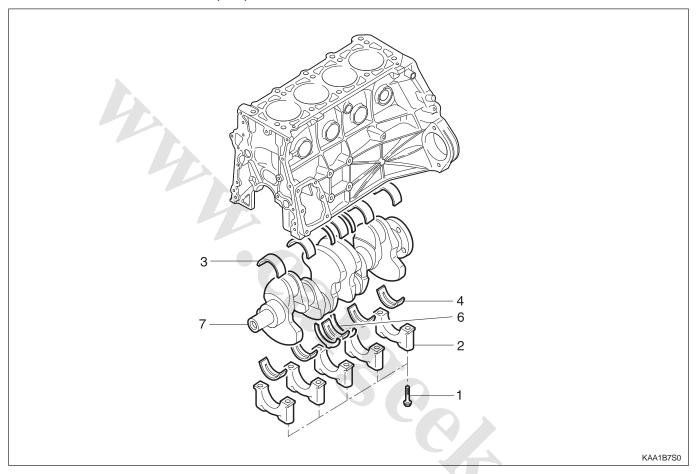
601 589 03 43 00 Crankshaft Rear Seal Installer

Replacement Procedure

- Remove the radial seal with a screw driver.
 Notice: Use a clean cloth not to damage the radial seal mounting hole and the crankshaft.
- 2. Install the special tool (2) to the crankshaft.
- 3. Apply the engine oil on the special tool (2).

Notice: Do not use the grease.

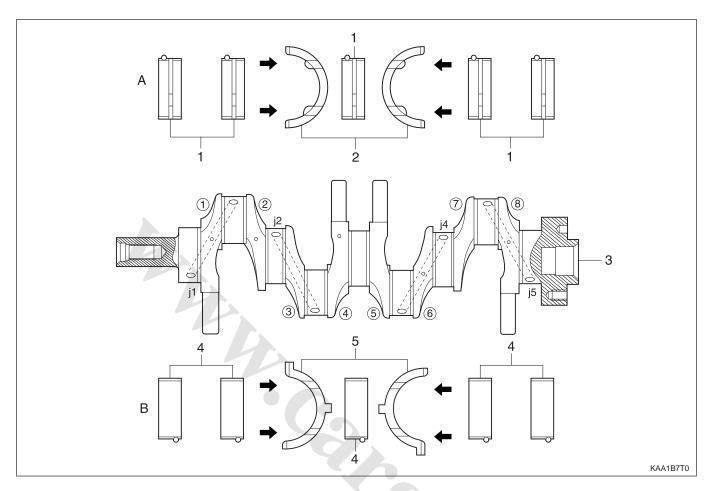
- 4. Install the radial seal on the inner parts assembler.
- 5. Press in the special tool (1) until the radial seal is stopped.
- 6. Check for leaks while operating the engine..


CRANKSHAFT

Preceding Work: Removal of engine

Removal of cylinder head

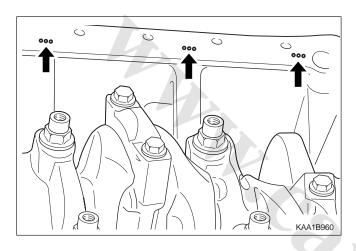
Removal of timing gear case cover Removal of crankcase sealing rear cover

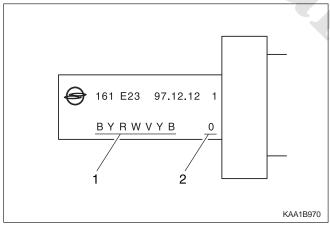

Removal of oil pan Removal of baffle plate Removal of oil pump

- 1 Bearing Cap Bolt (M8 X 55 10 pieces)
 1st step 55 N•m (41 lb-ft)
 2nd step 90° rotation added
- 2 Bearing Cap
- 3 Upper Main Bearing

- 4 Lower Main Bearing
- 5 Upper Thrust Bearing
- 6 Lower Thrust Bearing
- 8 Crankshaft.

Arrangement of the Thrust Bearing and the Main Bearing


- 1 Upper Main Bearing
- 2 Upper Thrust Bearing
- 3 Crankshaft
- 4 Lower Main Bearing
- 5 Lower Thrust Bearing


- A Crankcase Side
- B Bearing Cap Side (Oil Pan Side)

- (1) (8) Weight Balance/Color Marking Point
- j1 j5 Journal Main Bearing #1 #5
 - Color Dot Marking

The color dot marking are put on the (1), (2), (4), (6), (8), and it indicates the diameter of crankshaft journal by color as below.

Color Dot	Crankshaft Journal Diameter	
Marking	(mm)	
Blue	57.960 - 57.965	
Yellow	57.955 - 57.960	
Red	57.950 - 57.955	
White	57.945 - 57.950	
Violet	57.940 - 57.945	

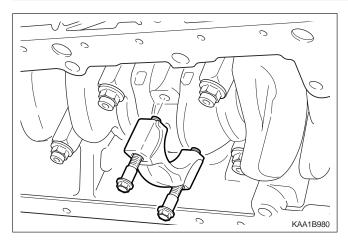
Selection of Crankshaft Main Bearing

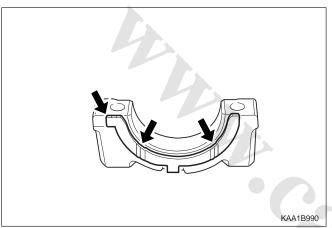
1. Crankcase Side

There are seven punching marks on the mating surface to oil pan. This mark is correspondent to the bearing distinguished by color. Select the relevant bearing according to the punching mark when repaired.

Purching Mark	Bearing Color Selected
•	Blue
••	Yellow
•••	Red

2. Crankshaft Bearing Cap Side


Select the crankshaft main bearing according to the marking letter on the crank shaft main journal when repaired.


Marking Letter	Bearing Color Selected
В	Blue
Υ	Yellow
R	Red
W	White
V	Violet

Service Data

Unit: mm

Crankshaft	Crankshaft	Crankshaft	Crankshaft	Connecting Rod	Connecting Rod
Standard and	Bearing Jour-	Bearing	Journal Width	Bearing Journal	Bearing Journal
Repair Size	nal Diameter	Diameter	at fit bearing	Diameter	Width
Standard size	57.940 - 57.965	58	24.50 - 24.533	47.935 - 47.965	27.958 - 28.042
1st repair size	57.705 - 57.715			47.700 - 47.715	
2nd repair size	57.450 - 57.465			47.450 - 47.465	
3rd repair size	57.205 - 57.215	-	-	47.200 - 47.215	-
4th repair size	56.955 - 56.965			46.950 - 46.965	

Part No. : 601 030 00 62 2.15 mm

Part No. : 601 030 01 62 2.20 mm

Part No. : 601 030 02 62 2.25 mm

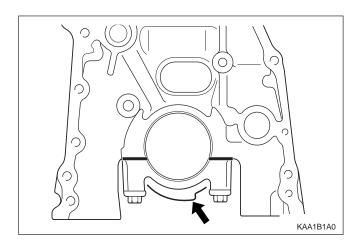
Part No. : 601 030 03 62 2.30 mm

Part No. : 601 030 04 62 2.40 mm

Removal & Installation Procedure

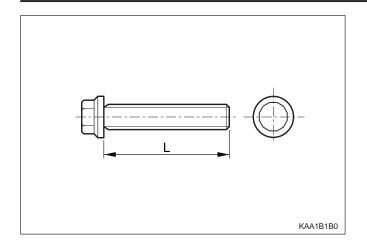
1. Unscrew the connecting rod bearing cap bolt and remove the bearing cap.

Installation Notice

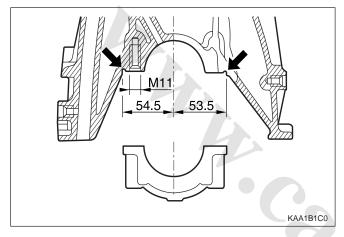

Tightening Torque	40 N•m (30 lb-ft) + 90°
-------------------	-------------------------

- Make sure that the upper and lower bearing shells do not change each other.
- Coat the bearing shell with engine oil.
- Install the bearing cap according to the consecutive number.
- 2. Unscrew the crankshaft bearing cap bolts and separate the upper and lower bearing shells and thrust washers.

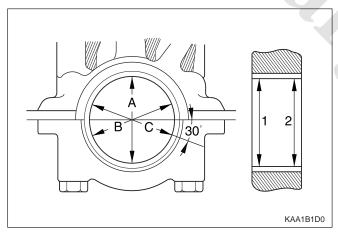
Installation Notice


Tightening Torque	55 N•m (41 lb-ft)+ 90°
-------------------	------------------------

- Remove the bearing cap from front (pulley side) to rear.
- Make sure that the upper and lower bearing shells do not change each other and coat with engine oil.
- The oil grooves (arrows) in the thrust washers must face outward and insert the thrust bearing into the bearing cap.
- There are five kinds of thrust washers by thickness. Select the proper washer when repaired.
- 3. Remove the crankshaft.
- 4. Installation should follow the removal procedure in the reverse order.
- 5. After completion of the installation, check for the rotating condition of the crankshaft.

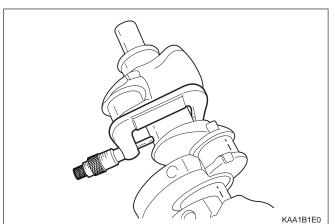

Installation Notice

- Make sure the crankshaft bearing cap properly seated in place in the crankcase side. When perfectly installed, the projected part (arrow) locates in the left side (intake manifold side).
- Assemble so that the projected part of the cap and crankcase face the same direction.



Inspection

1. If the length 'L' of the crankshaft bearing cap bolt exceeds 63.8 mm, replace it.


2. Make sure the crankshaft bearing cap is properly seated on the cylinder block (arrows).

3. Measure and record the inner diameter of the crankshaft bearing.

Notice:

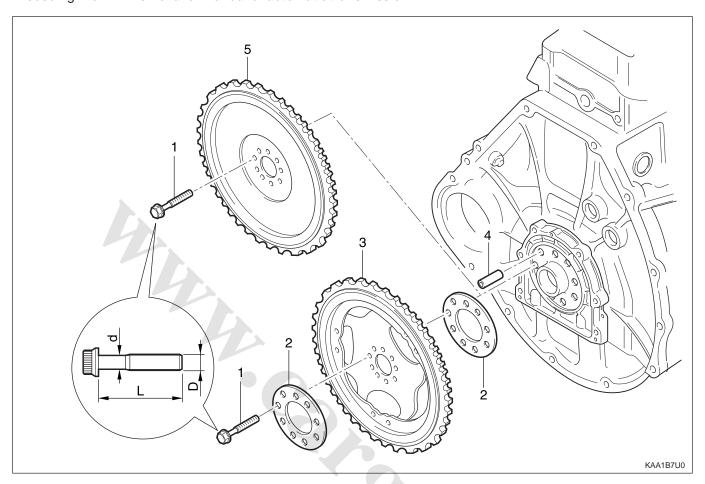
- Measure at 2 points (1, 2).
- Measure 'A', 'B' and 'C' as shown. If average value of 'B' and 'C' is less than value 'A', then the average value of 'B' and 'C' is actual average value. If average value of 'B' and 'C' is more than value 'A' is actual average value.

4. Measure and record the diameter of the crankshaft bearing journal.

Notice:

- Record the mean value when measured at 3 points (A, B, C).
- Measure the inner diameter of bearing and the diameter of journal and if it is out of the standard data, replace the bearing shell.

Service Data Standard (Crankshaft Main Bearing Gap)


Item	Measuring Position	Gap (mm)
		Static condition: 0.015 - 0.039
Main Bearing Journal	Radial	Dynamic condition: 0.031 - 0.051
(NO. 1, 5, 7)		(Consider the expansion 0.011 - 0.016)
	Axial	0.010 - 0.254

(Connecting Rod Bearing Gap)

Item	Measuring Position	Gap (mm)
Connection Rod Bearing	Radial	0.020 - 0.065
Connection Rod Bearing	Radial	0.020 - 0.065

FLYWHEEL / DRIVEN PLA TE

Preceding Work: Removal of manual or automatic transmission

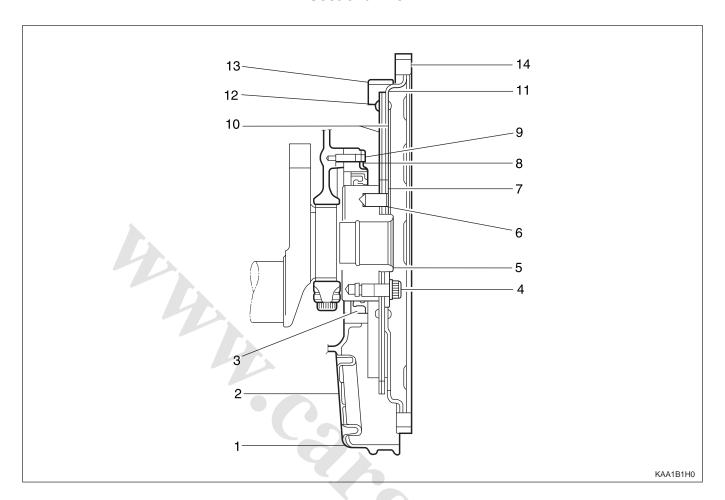
- 1 Flywheel Mounting Bolt (M10 x 22, 8 pieces)
 1st step 45 + 5 N•m (33 + 3.7 lb-ft)
 2nd step 90° + 10°
- 2 Plate

- 3 Driven Plate (A/T)
- 4 Dowel Pin
- 5 Flywheel (M/T)

Service Data Standard (Stretch Bolt)

Normal Size	D	-	M x 15
Stretch Side Diameter	d	When New	8.5 - 0.2 mm
		Min. Diameter	8.0 mm
Bolt Length	L	When New	21.8 - 22.2 mm
Tightening Torque	1st step 45 + 5 N•m (33 + 37 lb-ft), 2nd step 90° + 10°		

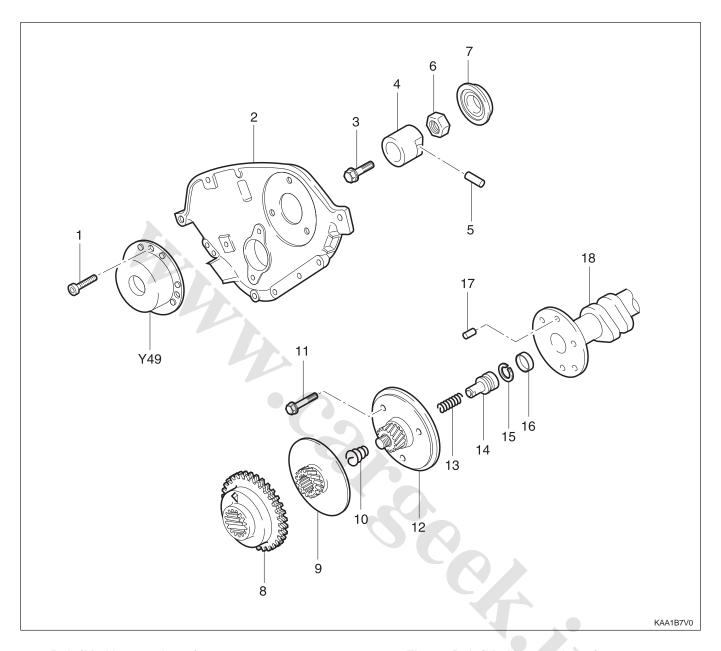
Removal & Installation Procedure


1. Unscrew the flywheel mounting bolt.

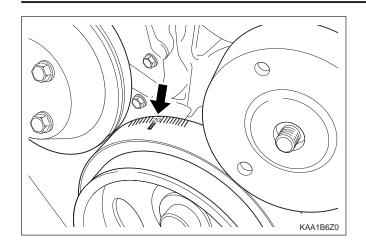
Installation Notice

Tightening Torque	1st step: 45 + 5 N•m (33 + 3.7 lb-ft)
	2nd step: 90° ± 10°

- Replace the bolt when the stretch side diameter (d) of the flywheel mounting bolt is less than 8.0 mm.
- For the flywheel mounting bolt tightening, keep the socket wrench and Tommy-bar to be 90 °and tighten as specified.
- 2. Remove the flywheel for manual transmission vehicles, or the driven plate (3), and plate (2) for Auto transmission vehicle.
- 3. Installation should follow the removal procedure in the reverse order.


Sectional View

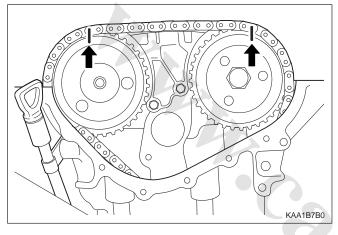
- 1 OilPan
- 2 Cover
- 3 Radial Seal
- 4 Bolt
- 5 Crankshaft
- 6 Dowel Pin
- 7 Washer (Thickness: 3.5 mm)


- 8 Washer
- 9 Bolt
- 10 Front Drive Plate
- 11 Rear Drive Plate
- 12 Rivet
- 13 Segment
- 14 Ring Gear

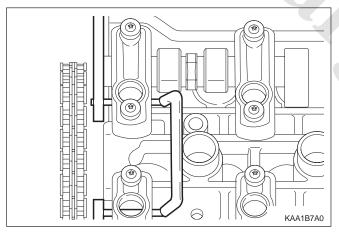
CAMSHAFT ADJUSTER

- 1 Bolt (M6 X 16, 3 pieces)
- 9 11 N•m (80 97 lb-in)
- 2 Cylinder Head Front Cover
- 4 Armature
- 5 RollPin
- 6 Nut (M20 X 1.5) 60 70 N•m (44 52 lb-ft)
- 7 Seal Cover
- 8 Camshaft Sprocket
- 9 Adjust Piston
- 10 Conical Spring

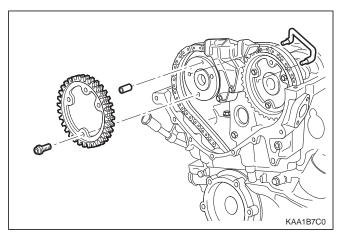
- 11 Flange Bolt (M7 X 13, 3 pieces)
- 12 Flange Shaft
- 13 Compression Spring
- 14 Control Piston
- 15 Circlip
- 16 Oil Gallery
- 17 Straight Pin
- 18 Intake Camshaft
- Y49 Magnetic Actuator (2 Pin Connector)



Removal & Installation Procedure

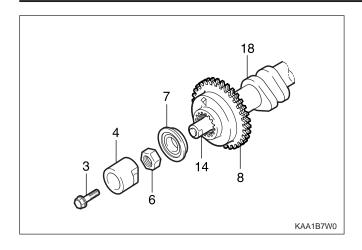

1. Turn the crankshaft and position the No. 1 cylinder piston at ATDC 20°.

Notice: Turn the crankshaft in the direction of engine rotation.


2. Remove the cylinder head front cover.

3. Put the alignment marks (arrows) on the camshaft sprocket and the timing chain.

- 4. Insert the holding pin 111 589 03 15 00 into the bearing cap hole on camshaft to secure intake and exhaust camshaft.
- 5. Remove the chain tensioner.


6. Unscrew the exhaust sprocket bolt and remove the exhaust camshaft sprocket.

Installation Notice

Tightening Torque	1st step: 18 - 22 N•m (13 - 16 lb-ft)
	2nd step: 60° ± 5°

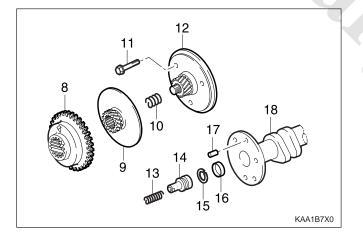
Notice: The flange bolt is designed to be used only once, so always replace with new one.

1B2-56 M161 ENGINE MECHANICAwww.CarGeek.ir

7. Unscrew the bolt (3) from the armature (4) and re ove the roll pin, and remove the armature.

Installation Notice

Tightening Torque	35 N•m (26 lb-ft)
0 .	` ,

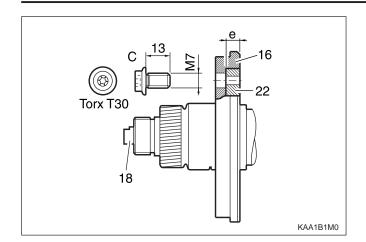

8. Unscrew the nut (6) and remove the seal cover (7).

Installation Notice

Tightening Torque	60 - 70 N•m
Ingritoring rorque	(44 - 52 lb-ft)

Notice: Put the locking slot of nut toward armarture.

Take off the timing chain from intake camshaft sprocket.

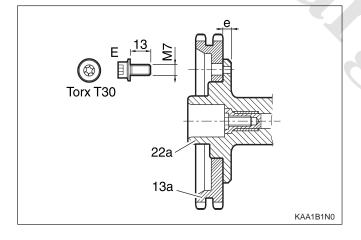

- 10. Remove the adjuster piston (9) and conical spring (10) from intake camshaft sprocket.
- 11. Unscrew the bolt (11) and remove the flange shaft.

Installation Notice

Tightening Torque	1st step: 18 - 22 N•m (13 - 16 lb-ft)
	2nd step: 60° ± 5°

Notice: The flange bolt is designed to be used only once, so always replace with new one.

- 12. Installation should follow the removal procedure in the reverse order.
- 13. Check and adjust the camshaft timing.


CAMSHAFT SPROCKET BOLT

Intake Flange Shaft Bolt

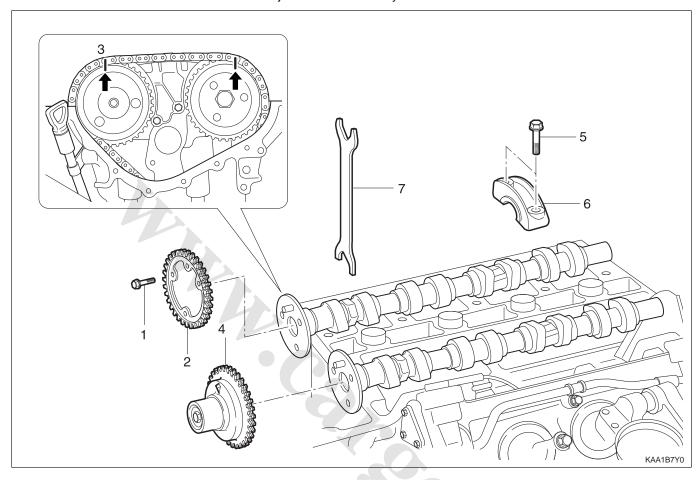
Tightening Torque	1st step :18 - 22 N•m
	(13 - 16 lb-ft)
	2nd step:60° ± 5°

Notice: The sprocket bolts are designed to be used only once, so always replace with new one.

- C M7 x 13 Collar Bolt Torx-T30
- e 6.8 mm
- 16 Flange Shaft
- 18 Control Piston
- 22 Intake Camshaft

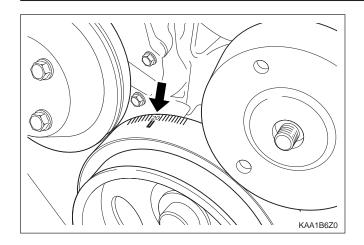
Exhaust Camshaft Sprocket Bolt

	1st step :18 - 22 N•m
Tightening Torque	(13 - 16 lb-ft)
	2nd step:60° ± 5°

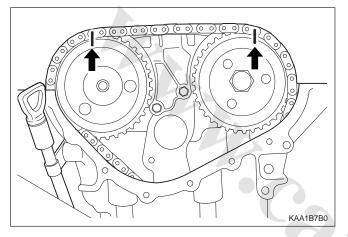

Notice: The sprocket bolts are designed to be used only once, so always replace with new one.

- E M7 x 13 Collar Bolt Torx-T30
- e 6.8 mm
- 13a Camshaft Sprocket
- 22a Exhaust Camshaft

CAMSHAFT

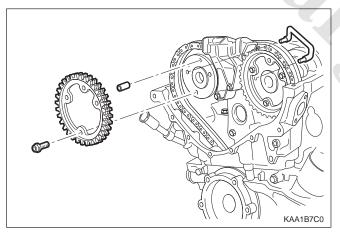

Preceding Work: Removal of cylinder head cover

Removal of camshaft adjust actuator and cylinder head front cover


- 1 Bolt (M7 X 13, 3 pieces)1st step 18 - 22 N•m (13 - 16 lb-ft) 2nd step 60° ± 5° Rotation Added
- 2 Exhaust Camshaft Sprocket
- 3 Timing Chain

- 4 Camshaft Adjuster and Camshaft Sprocket
- 6 Camshaft Bearing Cap
- 7 Wrench

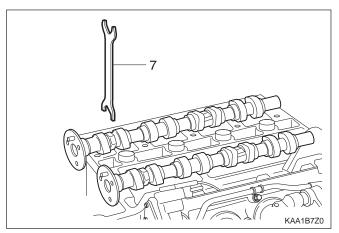
Removal & Installation Procedure


1. Turn the crankshaft and position the no.1 cylinder piston at ATDC 20°.

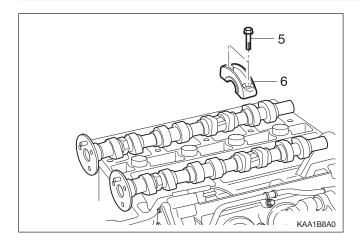
- 2. Put the alignment marks (arrows) on the camshaft sprocket and the timing chain.
- 3. Remove the chain tensioner.

Installation Notice

	Screw Plug	40 N•m
Tightening		(30 lb-ft)
Torque	Tensioner	72 - 88 N•m
	Assembly	(53 - 65 lb-ft)


4. Remove the exhaust camshaft sprocket.

Installation Notice


	1st step :18 - 22 N•m
Tightening Torque	(13 - 16 lb-ft)
	2nd step:60° ± 5°

Notice: The sprocket bolt is designed to be used only once, so always replace with new one.

- 5. Take off the timing chain from intake camshaft sprocket, and secure it not to fall down into the timing gear case.
- 6. Using the wrench (7), turn the camshaft until there is no resistence in camshaft bearing area.

1B2-60 M161 ENGINE MECHANICAWww.CarGeek.ir

7. Remove the bearing cap, and remove the intake and the exhaust camshaft.

Installation Notice

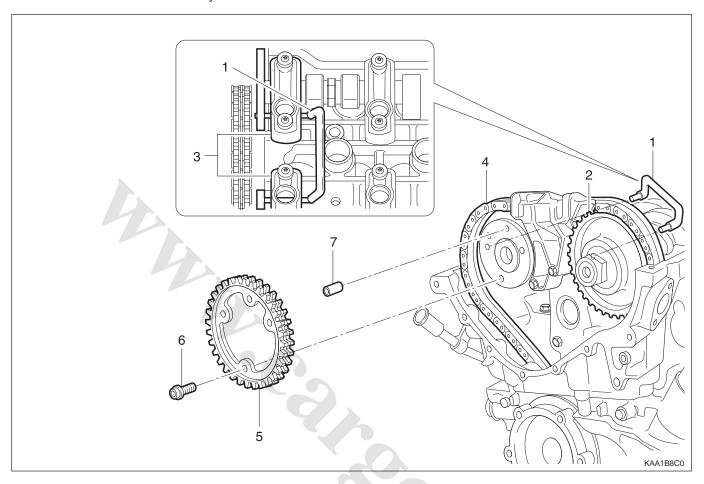
Tightening Torque	22.5 - 27.5 N•m	
rigitioning rolquo	(16.6 - 20.3 lb-ft)	

Notice: Check the numbers on the bearing cap not to be mixed up.

- 8. Apply the engine oil on the valve tappet and camshaft bearing.
- 9. Installation should follow the removal procedure in the reverse order.

Notice:

- Base circle of cam should cantact with the valve tappet.
- Install the camshaft bearing caps according to the numbers on the cylinder head cast and bearing cap.

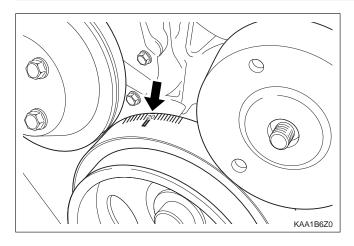


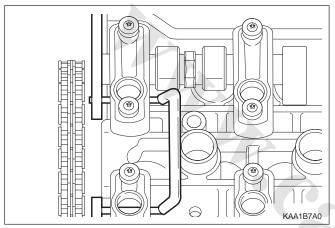
10. Check the camshaft timing position.

CAMSHAFT TIMING POSITION

Preceding Work: Removal of cylinder head cover

Removal of cylinder head front cover




- 1 Holding Pin 111 589 03 15 00
- 2 Intake Camshaft Sprocket
- 3 Camshaft Bearing Cap
- 4 Timing Chain
- 5 Exhaust Camshaft Sprocket

- 6 Bolt (M7 X 13, 3 pieces)
 -1st step 18 22 N•m (13 16 lb-ft)

2nd step 60° ± 5° rotation added

7 Strate Pin

Tools Required

111 589 03 15 00 Holding Pin

Inspection Procedure

1. Position the No. 1 cylinder piston to ATDC 20° by turning the crankshaft.

Notice: When the ATDC 20° mark on vibration damper is aligned with timing gear case cover, the intake and exhaust cam of cylinder will make the slope to the center and will face up. In this way, the insert hole in camshaft bearing cap will match in line with the flange hole for camshaft sprocket.

- 2. Check the timing as below procedure;
 - Check if the holding pin 111 589 03 15 00 can be inserted into the bearing cap hole.
 - At this condition, check if the ATDC 20° mark on vibration damper aligns with the marker on the timing gear case.

Adjustment Procedure

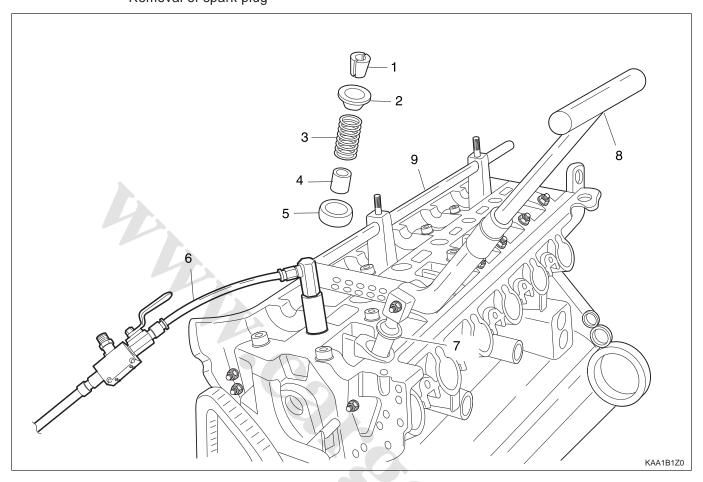
- 1. Position the No. 1 cylinder to ATDC 20°.
- 2. Remove the chain tensioner.
- 3. Remove the exhaust camshaft sprocket.
- 4. Adjust the timing position with inserting the holding pin 111 589 03 15 00 into the camshaft bearing cap hole and flange hole while rotating the camshaft by using wrench.
- 5. Install the chain to the intake camshaft sprocket.
- 6. Install the chain to the exhaust camshaft sprocket and tighten the bolt.

Installation Notice

Tightening Torque	1st step :18 - 22 N•m (13 - 16 lb-ft)
	2nd step:60° ± 5°

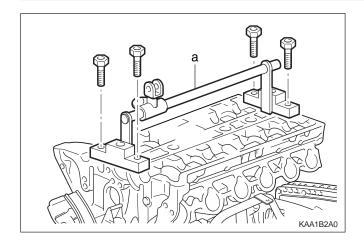
The sprocket bolt is designed to be used only once, so replace with new one.

7. Install the chain tensioner.


Installation Notice

Tightening	Screw Plug	40 N•m (30 lb-ft)
Torque	Tensioner Assembly	72 - 88 N•m (53 - 65 lb-ft)

8. Check the camshaft timing.

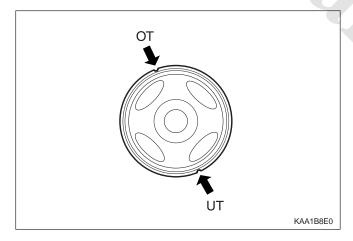

VALVE SPRING

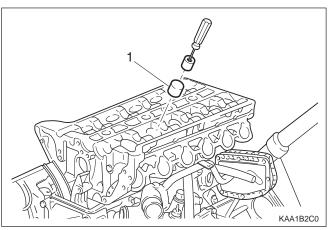
Preceding Work: Removal of camshaft
Removal of spark plug

- 1 Valve Cotter
- 2 Valve Spring Retainer
- 3 Valve Spring
- 4 Valve Stem Seal
- 5 Lower Retainer

- a Lever Pusher 111 589 18 61 00
- b Thrust Piece 111 589 25 63 00
- c Connecting Hose DW 110 090
- d Supporting Bar 111 589 01 59 00

Tools Required

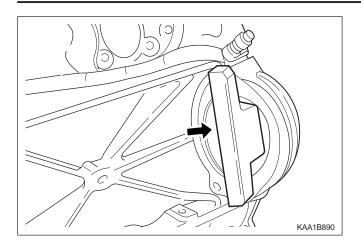

111 589 01 59 00 Supporting Bar
 111 589 18 61 00 Lever Pusher
 111 589 25 63 00 Thrust Piece
 602 589 00 40 00 Engine Lock
 DW110 - 090 Connecting Hose
 DW110 - 100 Valve Tappet Remover


Removal & Installation Procedure

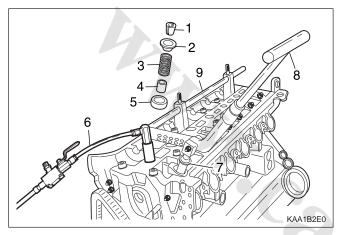
1. Place the supporting bar 111 589 01 59 00 (a) at the camshaft bearing cap and tighten them with the bearing cap bolt.

Installation Notice

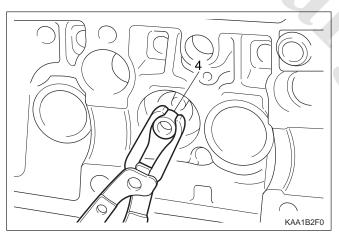
Tightening Torque	22.5 - 27.5 N•m
rigitterining rorque	(16.6 - 20.3 lb-ft)



2. Turn the crankshaft to position the each cylinder piston at TDC.

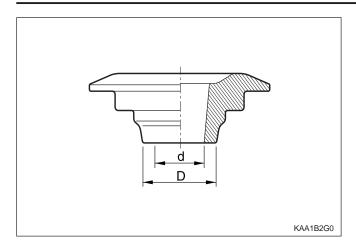

Mark on The Vibration Damper	Cylinder
ОТ	1, 4
UT	2, 3

Notice:


- Remove the valve spring only at TDC.
- Always rotate the crankshaft by holding the chain to prevent from timing chain damage and tangling, and for smooth rotation.
- 3. Remove the valve tappet using the valve tappet remover DW110 100.
- 4. Install the connecting hose DW110 090 (c) to the spark plug hole.

- 5. Install the engine lock 602 589 00 40 00 to the ring gear to prevent the crankshaft from rotating.
- 6. Blow up with compressed air.

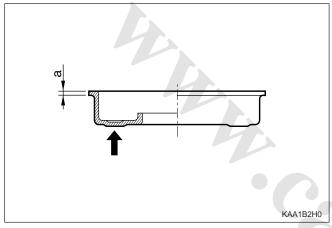
- 7. Install the supporting bar 111 589 01 59 00 (9) and the lever pusher 111 589 18 61 00 (6).
- 8. Mount the thrust piece 111 589 25 63 00 (b) vertically to the valve spring retainer (2).
- 9. Press the valve spring (3) by using the lever pusher 111589 18 61 00 (6).
- 10. Remove the valve cotter (1) using the pincette.
- 11. Remove the upper retainer (2) and the valve spring (3).


12. Remove the valve stem seal (4) and replace if necessary.

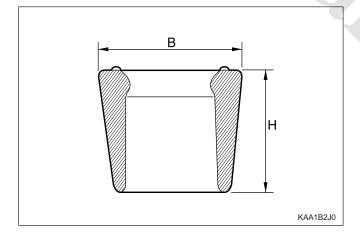
Notice: Check the valve stem seal for damage and replace if necessary.

13. Remove the lower retainer.

Notice: Check the retainer for damages and replace with a new one if necessary.


14. Installation should follow the removal procedure in the reverse order.

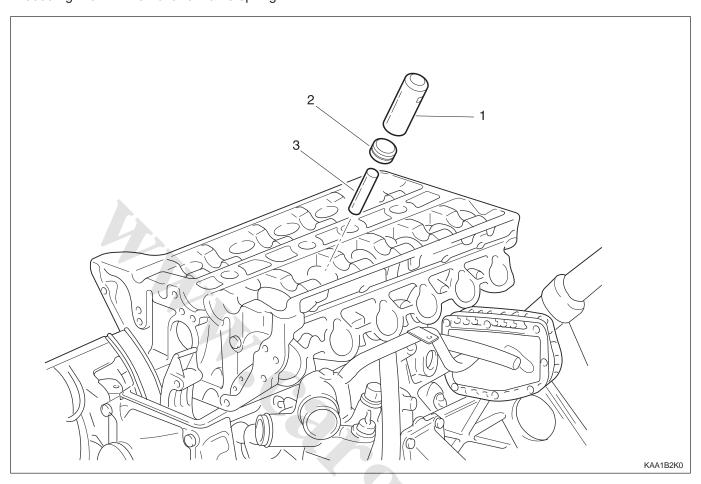
Test (Upper and Lower Valve Tappet and Valve Cotter)


• Upper Valve Spring Retainer

Size (mm)	(d)	8.5
OIZC (IIIII)	(D)	12.3

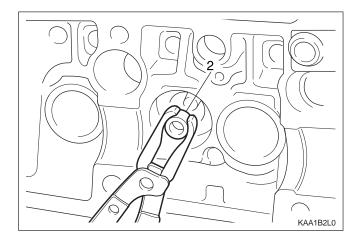
Lower Valve Spring Retainer

			_	
Thickness (mm)	(a)		0.8 - 1.0



Valve Cotter

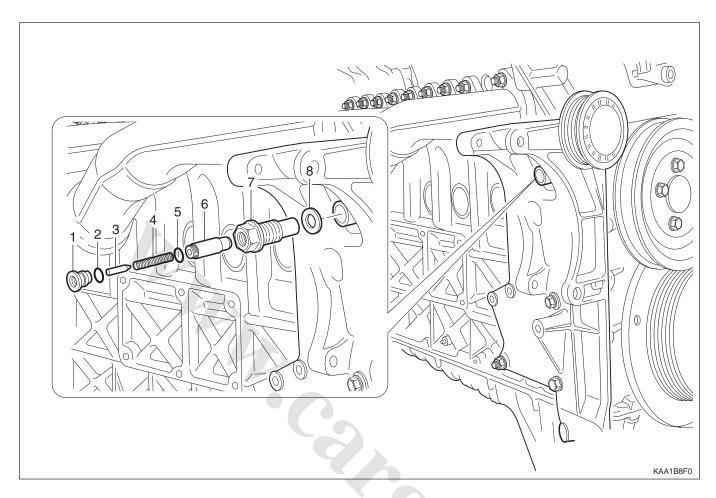
Size (mm)	(B)	9.0
Oize (IIIII)	(H)	9.2 - 9.8


VALVE STEM SEAL

Preceding Work: Removal of valve spring

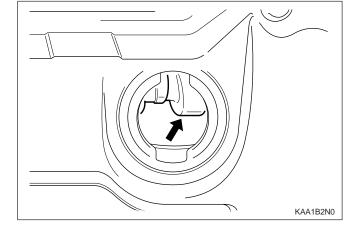
- 1 Drift
- 2 Valve Stem Seal

3 Protective Sleeve


Tools Required

119 589 00 43 00 Drift

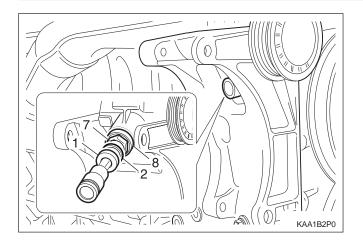
Replacement Procedure

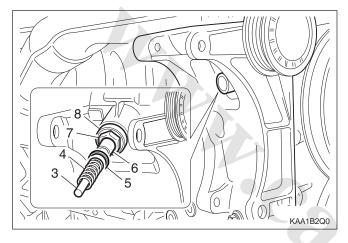

- Remove the valve stem seal (2) using the pliers.
 Notice: Check the valve stem seal for damage and replace if necessary.
- 2. Coat the valve stem seal with oil and assemble it with the protective sleeve.
- 3. Insert the valve stem seal by pressing it with the drift 119 589 00 43 00.

CHAIN TENSIONER

- 1 Screw Plug 40 N•m (30 lb-ft)
- 2 Seal
- 3 Filler Pin
- 4 Compression Spring
- 5 Snap Ring

- 6 Thrust Pin
- 7 Chain Tensioner Housing
- 8 Seal


Removal Procedure

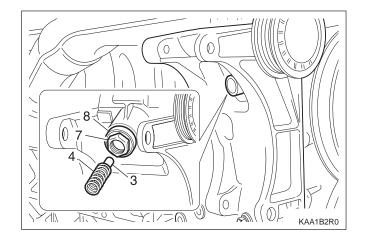

1. Position the No. 1 cylinder to ATDC 20°.

Notice: Remove the oil filler cap at adjustment position, and check whether the intake camshaft cam's lobe (arrow) stays in the upper side.

- 2. Cover the generator with a clean cloth.
- 3. Release the tension by unscrewing the screw plug once.

Notice: In case that the tension is reduced by unscrewing the screw plug, reinstall after completely removing the chain tensioner. If the chain tensioner is tightened again without completely reducing its tension, then the snap ring doesn't return to the original position and the tension gets exceeded.

4. Carefully unscrew the screw plug (1), and remove the seal (2).


Notice:

- For the removal of screw plug, be careful that it can be jumped out due to the force of compression spring.
- Remove the screw plug only when the seal and compression spring are damaged.
- 5. Carefully remove the filler pin (3), compression spring (4), snap ring (5), and the thrust pin (6).
- 6. Remove the chain tensioner housing (7) and the seal (8).

Installation Procedure

1. Connect the thrust pin (6) and the snap ring (5) to the chain tensioner housing (7).

Notice: When connecting the thrust pin, push in the thrust pin far enough so that it doesn't protrude at the chain tensioner housing.

2. Install the chain tensioner housing (7), thrust pin (6), snap ring (5), and the seal (8).

Installation Notice

3. Insert the compression spring (4) with the filler pin (3) into chain tensioner housing.

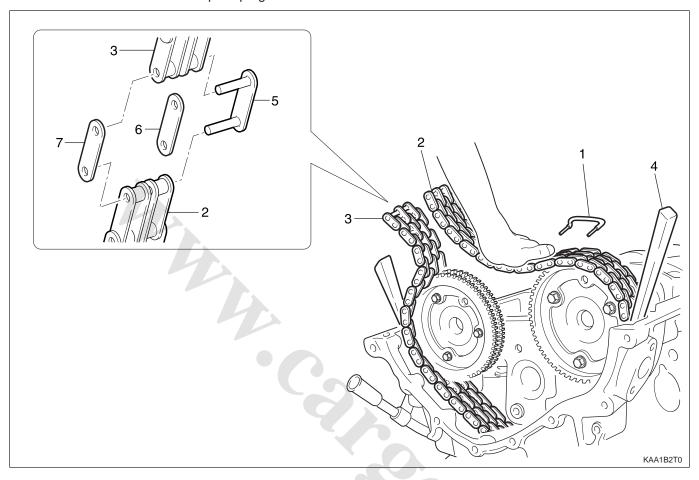


4. Lightly apply the grease to the seal (2) and install the screw plug (1).

Installation Notice

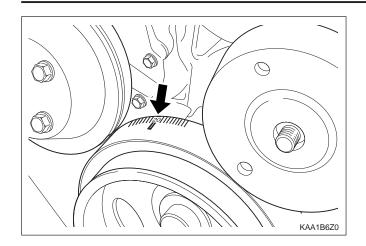
5. Check for leaks by operating the engine.

Sectional View


- 1 Screw Plug
- 2 Ball (Nonreturn Valve)
- 3 Compression Spring
- 4 Ball Guide
- 5 Seal (Aluminum)
- 6 Filler Pin
- 7 Compression Spring
- 8 Snap Ring
- 9 Thrust Pin
- 10 Ball (Nonreturn Valve)
- 11 Compression Spring
- 12 Thrust Piece

- 13 Chain Tensioner Housing
- 14 Seal
- 15 Timing Gear Case Cover
- 16 Cylinder Head
- 17 Bolt / Washer
- 18 Tensioning Rail
- 19 Cylinder Head Gasket
- 20 Timing Chain
- 21 Tensioning Rail Base (Sliding Surface)
- A Oil Supply Hole
- B Chain Tensioner Oil Storage Hole

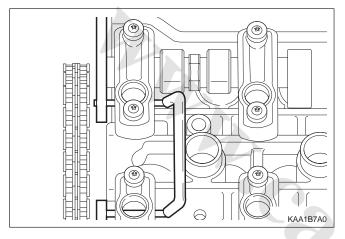
TIMING CHAIN


Preceding Work: Removal of cylinder head cover

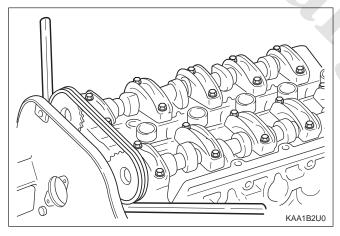
Removal of spark plug

- 1 Pin
- 2 New Timing Chain
- 3 Timing Chain (Used)
- 4 Wedge

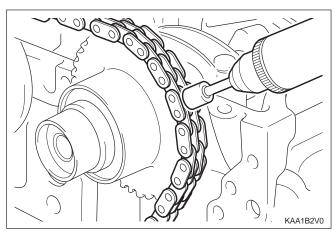
- 5 Link
- 6 Center Plate
- 7 Outer Plate



Tools Required


000 589 58 43 00 Chain Assembly 111 589 03 15 00 Holding Pin

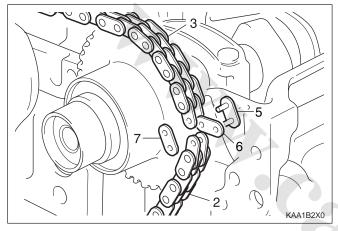
Replacement Procedure


1. Position the No. 1 cylinder to ATDC 20°.

- 2. Insert the holding pin 111 589 03 15 00 to the intake and exhaust camshaft flange not to rotate camshaft.
- 3. Remove the chain tensioner.

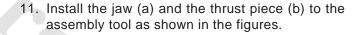


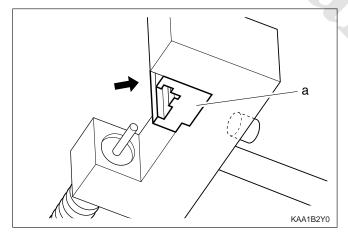
4. Mount the wedges to both sides of the camshaft sprocket as shown in the figure.

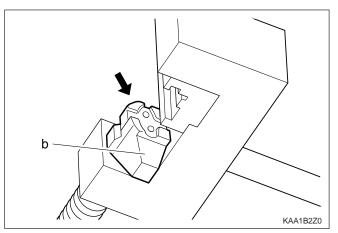


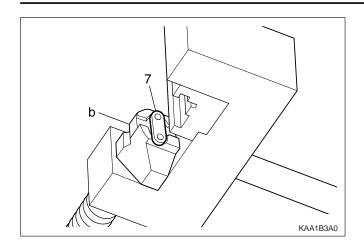
5. Cover the chain housing with a clean cloth, and grind off the timing chain pin from the intake camshaft sprocket with the grinder.

1B2-74 M161 ENGINE MECHANICAWww.CarGeek.ir

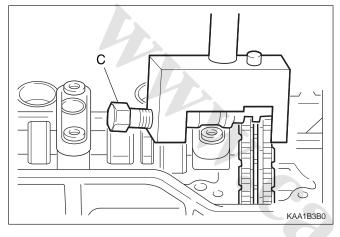

6. Remove the outer plate (7) with the screw driver and remove the link (5).

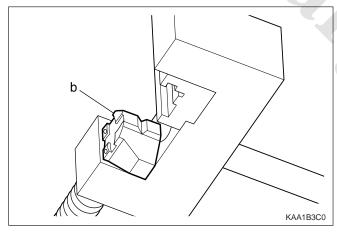


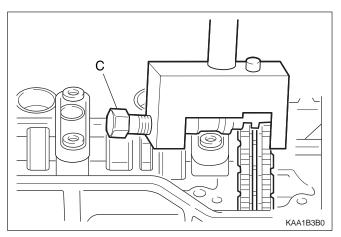

- 7. Connect the new timing chain (2) to the used timing chain (3) with the link (5), center plate (6, thickness 1.6 mm), and the outer plate (7).
- Rotate the crankshaft in the direction if engine revolution by pressing the new timing chain against the exhaust camshaft sprocket to prevent it to be tangled.


Notice: Be sure to remove the wedge before cranking the engine.

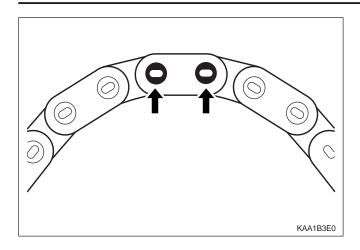
- 9. Take out the used timing chain out from the chain housing.
- 10. Connect both separators of the new timing chain with the link (5) and the center plate (6).






12. Place the outer plate (7, thickness 1.2 mm) inside the thrust piece (b).

- 13. Install the chain assembly 000 589 58 43 00 above the link and tighten the spindle (c) until a block is felt
- 14. Place the chain assembly 000 589 58 43 00.


15. Replace the thrust piece (b) as shown in the figure.

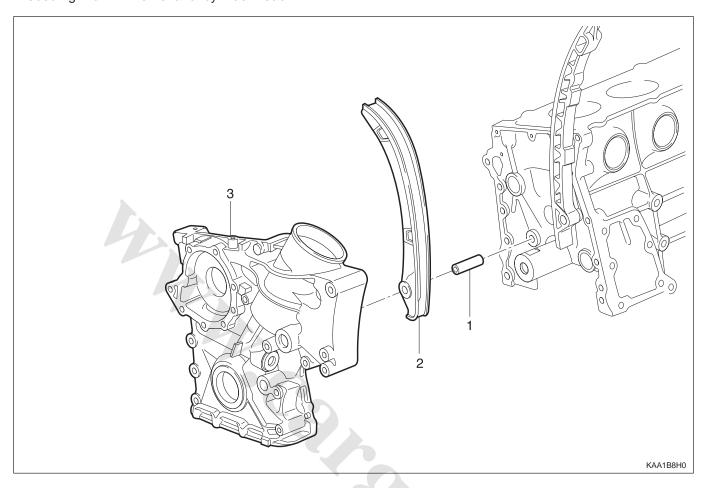
16. Install the chain assembly 000 589 58 43 00 to the link pin and tighten the spindle (c).

Installation Notice

Tightening Torque	30 N•m (22 lb-ft)
-------------------	-------------------

- 17. Rivet the link pin.

 Check the condition and it again if necessary.
- 18. Install the chain tensioner.


Installation Notice

Tightening	Screw Plug	40 N•m (30 lb-ft)
Torque	Tensioner Assembly	72 - 88 N•m (53 - 65 lb-ft)

19. Check the camshaft timing position.

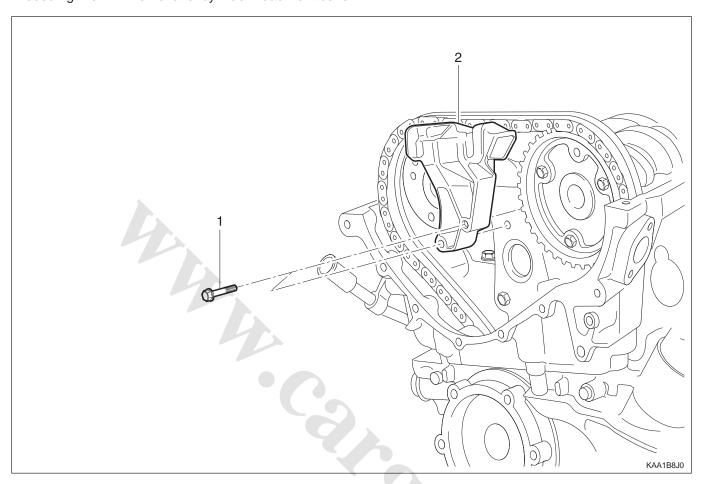
TENSIONING RAIL

Preceding Work: Removal of cylinder head

- 1 Sliding Rail Pin
- 2 Sliding Rail

3 Timing Gear Case Cover

Removal & Installation Procedure


- 1. Remove the timing gear case cover (3).
 - Notice: Be careful not to damage the gasket.
- 2. Remove the sliding rail (1) from the sliding rail pin (2).

Notice:

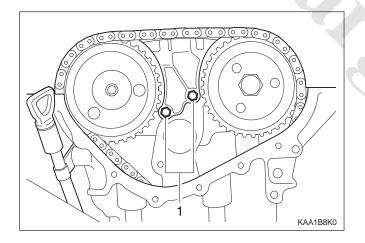
- Replace the plastic guide (2) if it is damaged.
- For installation, exactly align the plastic guide (2) with the sliding rail (1).
- 3. Installation should follow the removal procedure in the reverse order.

CYLINDER HEAD GUIDE RAIL

Preceding Work: Removal of cylinder head front cover

- 1 Bolt (M6 X 45, 2 pieces) 9 11 N•m (80 97 lb-in)
- 2 Guide Rail

Tools Required


111 589 03 15 00 Holding Pin

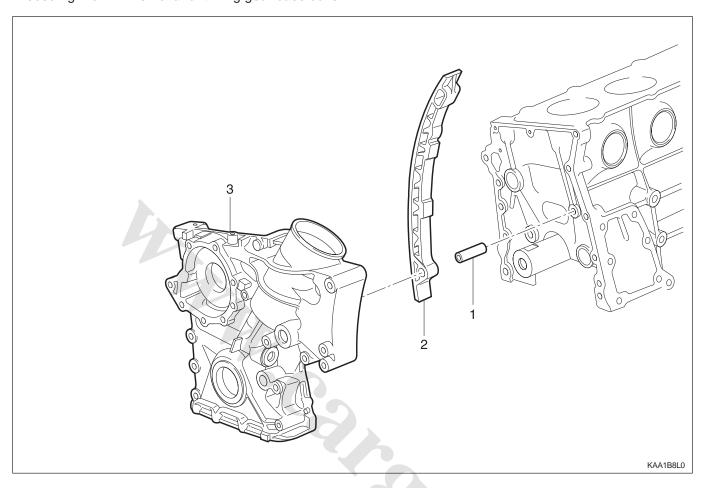
Removal & Installation Procedure

- 1. Position the No. 1 cylinder to ATDC 20° guide rail.
- 2. Install the holding pin 111 589 03 15 00 into the bearing cap hole.
- 3. Remove the chain tensioner.

Installation Notice

Tightening	Screw Plug	40 N•m (30 lb-ft)
Torque	Tensioner Assembly	72 - 88 N•m (53 - 65 lb-ft)

4. Unscrew the bolt (1) and remove the guide rail.


Installation Notice

Tightening Torque	9 - 11 N•m (80 - 97 lb-ft)
-------------------	-------------------------------

5. Installation should follow the removal procedure in the reverse order.

CRANKCASE GUIDE RAIL

Preceding Work: Removal of timing gear case cover

- 1 Guide Rail Pin
- 2 Guide Rail

3 Timing Gear Case Cover

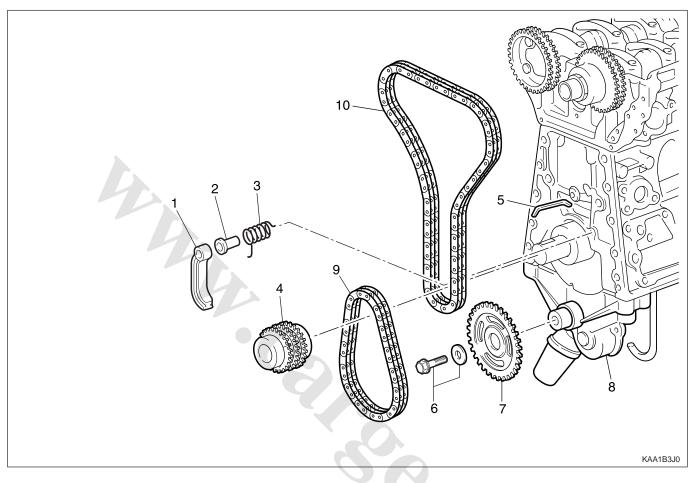
Removal & Installation Procedure

1. Remove the timing gear case cover (3).

Notice: Be careful not to damage the gasket when removing / installing the timing gear case cover.

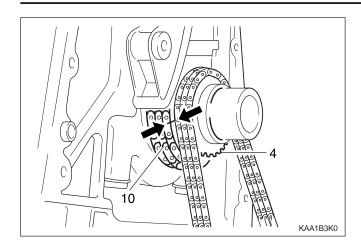
2. Remove the guide rail (2) from the guide rail pin (1).

Notice:


- Replace the plastic guide (2) if damaged.
- Connect the plastic guide (2) and the guide rail (1) by aligning them accurately when installing.
- 3. Installation should follow the removal procedure in the reverse order.

CRANKSHAFT SPROCKET

Preceding Work: Removal of oil pan


Removal of tensioning rail

Removal of crank case guide rail

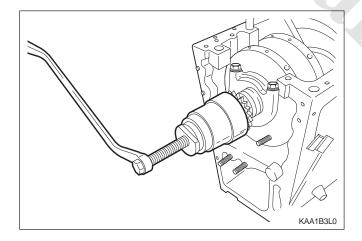
- 1 Oil Pump Chain Tensioner
- 2 Oil Pump Chain Bushing
- 3 Oil Pump Chain Spring
- 4 Crankshaft Sprocket
- 5 Key

- 6 Bolt (M8 x 20, 1 piece) / Washer 29 35 N•m (21 26 lb-ft)
- 7 Oil Pump Sprocket
- 8 Oil Pump
- 9 Oil Pump Roller Chain
- 10 Timing Chain

Tools Required

615 589 01 33 00 Crankshaft Sprocket Puller

Removal & Installation Procedure


1. Put the assembly mark at the crankshaft sprocket (4) and the timing chain (10) with the paint (arrow).

Notice: Align the assembly marks on crankshaft sprocket and timing chain. Also, align the assembly marks on camshaft sprocket and timing chain when installing.

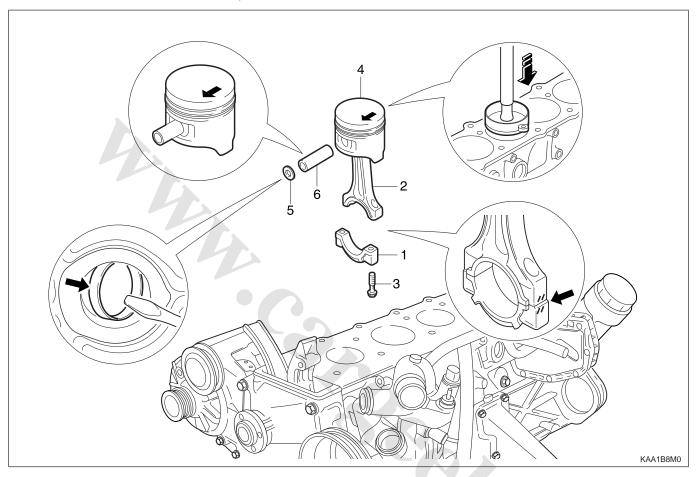
2. Unscrew the bolt (6) and remove the oil pump sprocket (7) from the oil pump.

Installation Notice

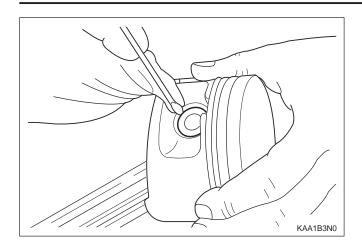
Tightening Torque	29 - 35 N•m
rigiticining rorque	(21 - 26 lb-ft)

- 3. Remove the oil pump roller chain (9).
- 4. Remove the oil pump chain tensioner (1), oil pump chain bushing (3), and the oil pump chain spring (2).
- 5. Remove the crankshaft sprocket (4) using crankshaft sprocketpuller 615 589 01 33 00.

Notice:


- Make sure not to lose the crankshaft pulley key
 (5) when removing.
- Install the crankshaft sprocket (4) after warming it up.
- 6. Installation should follow the removal procedure in the reverse order.

PISTON

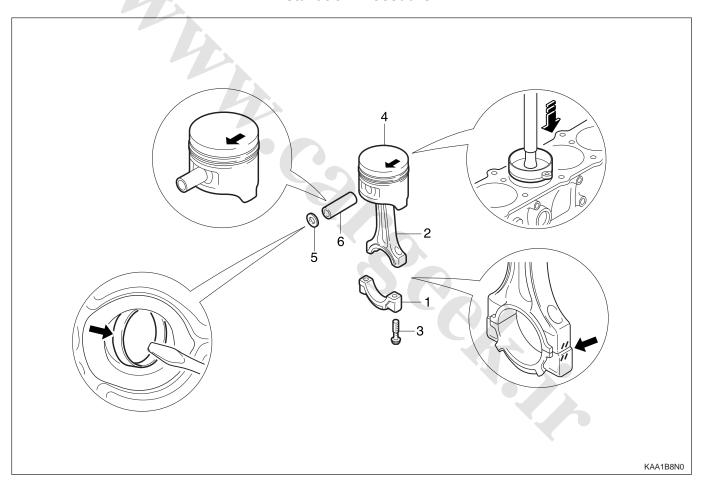

Preceding Work: Removal of engine

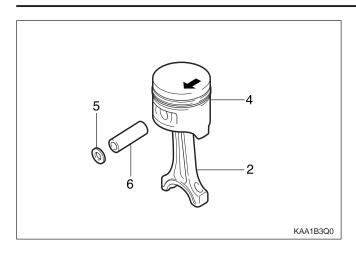
Removal of cylinder head

Removal of oil pan Removal of oil pump Removal of baffle plate

- 1 Connecting Rod Bearing Cap
- 2 Connecting Rod
- 3 Connecting Rod Bolt (M9 x 52, 8 pieces)1st step 40 N•m (30 lb-ft) 2nd step 90 °
- 4 Piston
- 5 Snap Ring
- 6 Piston Pin

Removal Procedure


- 1. Unscrew the connecting rod bolt (3) and remove the cap.
- 2. Remove the connecting rod and the piston upward.


Notice: Make sure that the bearing cap and shell are not changed each other.

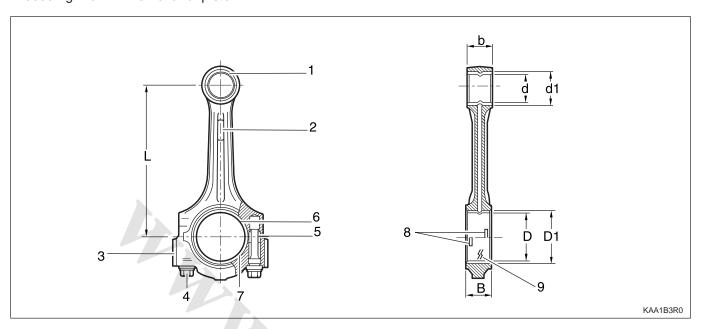
3. Remove the snapring (5) and pullout the piston pin (6).

Notice: Remove the snap ring using a clean cloth as shown in the right picture so that the piston, piston ring, and the snap ring don't get damaged.

Installation Procedure

- Check the piston ring gap and apply the engine oil to the piston pin and the connecting rod bushing.
- 2. Connect the piston and the connecting rod by pressing in the piston pin (6) and install the snap ring to the groove.
- 3. Clean the cylinder bore, connecting rod bearing journal, connecting rod bearing shell and the piston and coat them with engine oil.
- 4. Install the piston ring.
- 5. Install the piston so that the arrow on the piston head faces to the forward of the vehicle.
- 6. After aligning the connecting rod and the bearing cap mark (// or a number), tighten the bolts.

Installation Notice

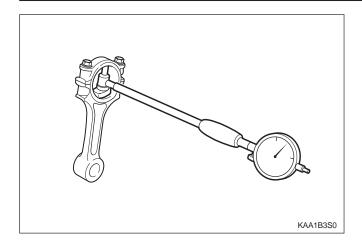

	1st step: 40 N•m
Tightening Torque	(30 lb-ft)
	2nd step: 90°

Apply the engine oil to the bearing cap upper and lower bearing shells.

7. Check if the crankshaft rotates without any trouble by rotating it.

CONNECTING ROD

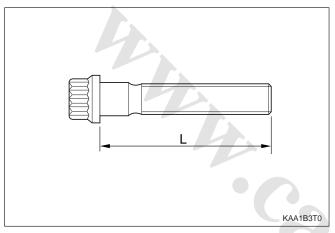
Preceding Work: Removal of piston



- 1 Connecting Rod Bushing
- 2 Oil Gallery
- 3 Balance Weight
- 4 Connecting Rod Bearing Cap Bolt (M9 x 52, 8 pieces)

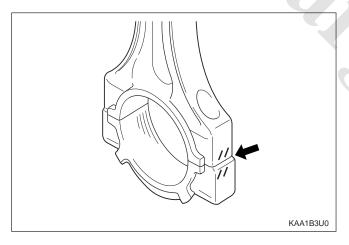
- 5 Fit Sleeve
- 6 Upper Connecting Rod Bearing
- 7 Lower Connecting Rod Bearing
- 8 Bearing Shell Lug
- 9 Marking [Indication (//) or Numbers]

Service Data Standard


Distance (L) from The Connecting Rod Bearing to Bushing Bore Center	149 ± 0.05mm
Width of The Connecting Rod (B) at Bearing Bore	21.940 - 22.000 mm
Width of The Connecting Rod (b) at Bushing Bore	21.940 - 22.000 mm
Basic Bore at The Bearing Shell (D1)	51.600 - 51.614 mm
Basic Bore at The Bushing (d1)	24.500 - 24.521 mm
Bushing Inner Diameter (d)	22.007 - 22.013 mm
Clearance Between The Piston Pin and The Bushing	0.007 - 0.018 mm
Peak-to-valley Height of Connecting Rod Bushing on Inside	0.005 mm
Permissible Wwist of Connecting Rod Bearing Bore to Connecting Rod Bushing	0.1/100 mm
Bore	
Permissible Deviation of Axial Parallelism of Connecting Rod	0.045/100 mm
Bearing Bore to Connecting Rod Bushing Bore	
Permissible Deviation of Axial Paralleism of Connecting Rod Bearing Bore from	0.01 mm
Concentricity	
Permissible Difference of Each Connecting Rod in Weight	0.4 g

Inspection

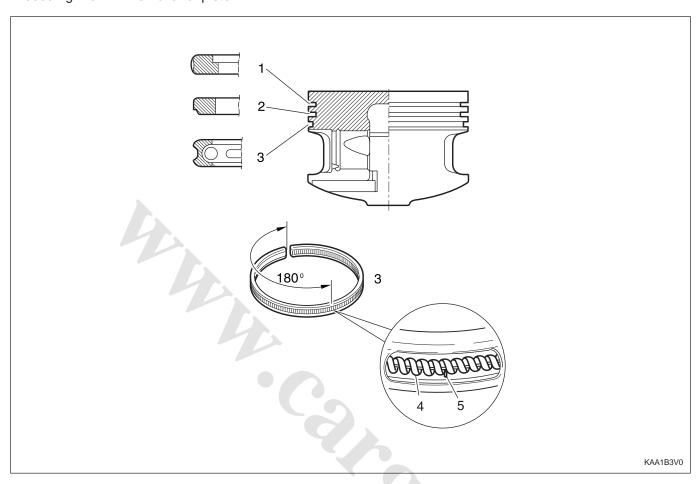
1. Measure the basic bore of the connecting rod bearing.


Notice: If the basic bore exceeds the value of 51.614 mm, replace the bearing or check the connecting rod.

2. Check connecting rod bolts.

Length When New (L)	51.7 - 52 mm
Max. Length (L)	52.9 mm
Tightening Torque	1st step : 40 N•m (30 lb-ft)
	2nd step: 90°

Notice: If the length exceeds max. length, replace it.


3. Check the assembly mark (indication//or number: arrow) of the connecting rods and the bearing cap when installing.

Notice:

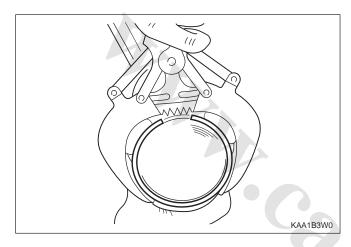
- Make sure it doesn't exceed over 4 g with other connecting rods when replacing the connecting rods.
- Check if the connecting rod and the bearing cap are accurately seated on the groove when replacing the bearing.

PISTON RING

Preceding Work: Removal of piston

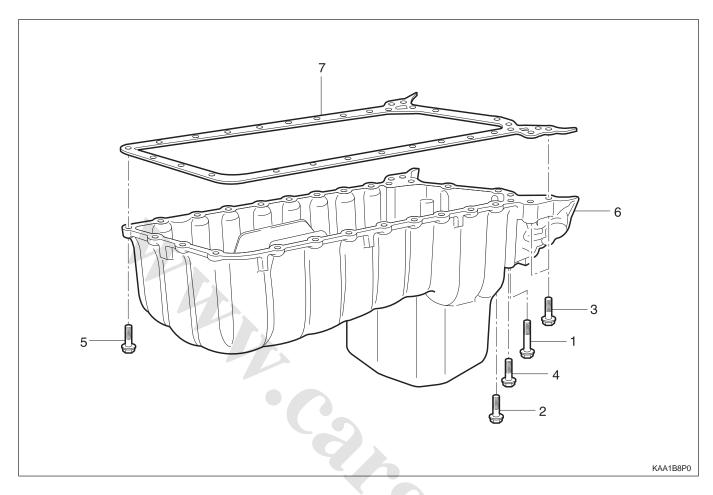
- 1 Piston Compression Ring (Top Ring)
- 2 Piston Compression Ring (2nd Ring)
- 3 Piston Oil Ring

- Spacer
- Side Rail


Replacement Procedure

1. Measure the piston ring's gap.

End Gap of The Piston Ring	Groove 1 0.20 - 0.40 mm
	Groove 2 0.20 - 0.40 mm
	Groove 3 0.20 - 0.45 mm
Gap Between the Piston and the Piston Ring	Groove 1 0.028 - 0.060 mm
	Groove 2 0.010 - 0.045 mm
	Groove 3 0.010 - 0.045 mm


Notice: If out of specification, replace the piston ring.

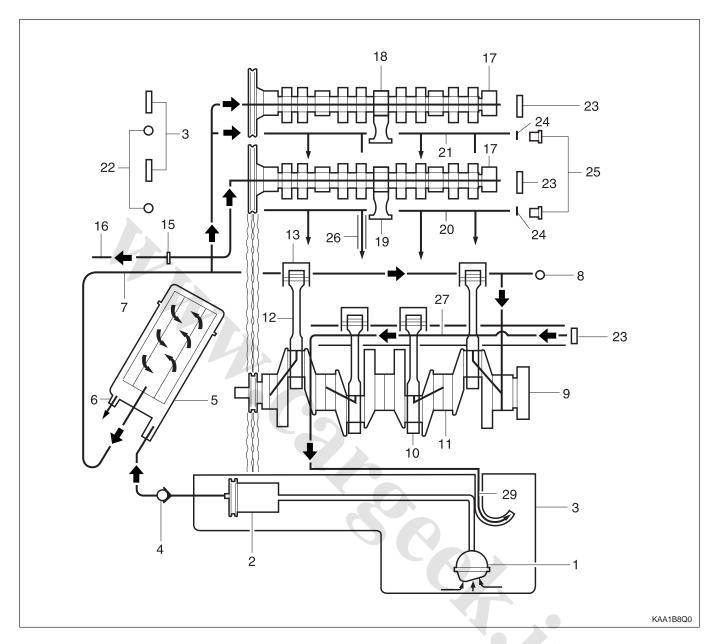
2. Remove the piston ring with a pliers.

- 1 120° 3 KAA1B3X0
- 3. For installation, position the piston ring to be the 'TOP' mark on the piston ring upward and arrange the piston ring ends to be 120° part.
- 4. Adjust the hook spring joint in the oil ring 180° way from the ring end.

OIL PAN

- 1 Bolt
- 2 Bolt
- 3 Bolt
- 4 Bolt

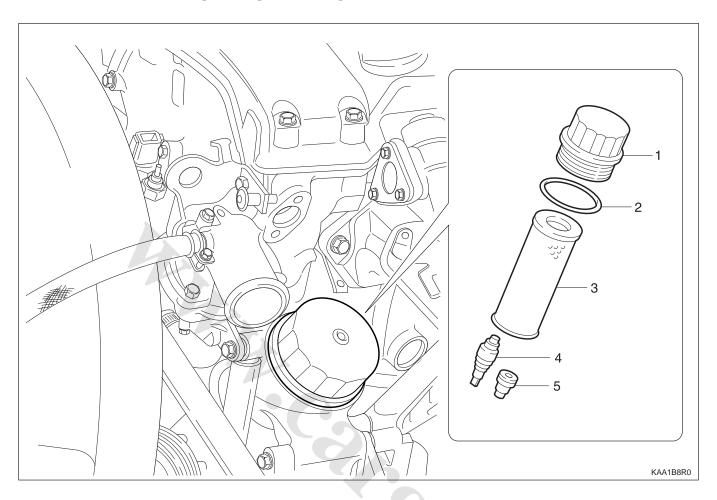
- 5 Bolt
- 6 Oil Pan
- 7 Gasket


Removal & Installation Procedure

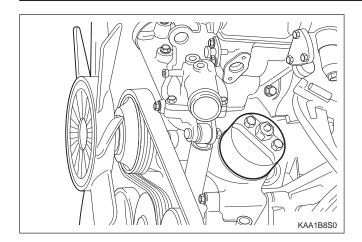
- 1. Remove the drain plug and drain the oil completely.
- 2. Unscrew the bolts and remove the oil pan and gasket.

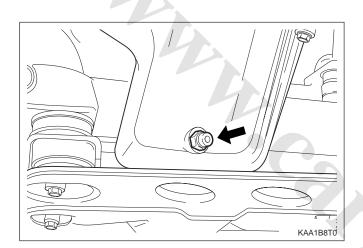
Notice: Arrange the bolts according to each size.

- 3. Clean the inside of oil pan and sealing surface, then apply the sealant.
- 4. Replace the gasket with new one.
- 5. Install the oil pan with gasket, and tighten each bolt in specified torque.
- 6. Check for oil leaks while running the engine.


Oil Circulation

- 1 Oil Strainer
- 2 Oil Pump
- 3 Oil Pan
- 4 Oil Non-Return Valve
- 5 Oil Filter
- 6 Oil Filter Bypass Valve
- 7 Main Oil Gallery
- 8 Closing Ball (ϕ 15 mm)
- 9 Crankshaft
- 10 Connecting Rod Bearing
- 11 Crankshaft Bearing
- 12 Connecting Rod
- 13 Piston
- 15 Non-Return Valve (Crankcase)


- 16 Oil Supply (To Chain Tensioner)
- 17 Camshaft
- 18 Cam Bearing
- 19 Valve
- 20 Oil Gallery (Supply Oil to Intake Tappet)
- 21 Oil Gallery (Supply Oil to Exhaust Tappet)
- 22 Ball (φ 8 mm)
- 23 Camshaft Plug
- 24 Seal
- 25 Screw Plug
- 26 Oil Return Gallery (Cylinder Head and Crankcase)
- 27 Oil Return Gallery (Crankcase)
- 29 Oil Return Pipe


ENGINE OIL AND OIL FIL TER ELEMENT

- 2 O-ring Replace
- 3 Oil Filter Element

- 4 Oil Drain Plug
- 5 Oil Filter Bypass Valve

Tools Required

103 589 02 09 00 Oil Filter Remover

Replacement Procedure

1. Install the oil filter remover 103 589 02 09 00 on the oil filter cover.

Notice: Make the screw cover removable by tightening the bolt at the side of the oil filter remover 103 589 02 09 00.

- 2. Install the wrench to the upper bolt in the oil filter remover 103 589 02 09 00 and remove the oil cover by turning it.
- 3. Remove the oil filter element.

Notice: Work with a cloth under the vehicle when removing the oil filter element to not drain the oil.

4. Remove the drain plug and drain the engine oil.

Notice: Leave the oil filler cap open to ease the engine oil discharge.

5. Tighten the engine oil drain plug after cleaning it.

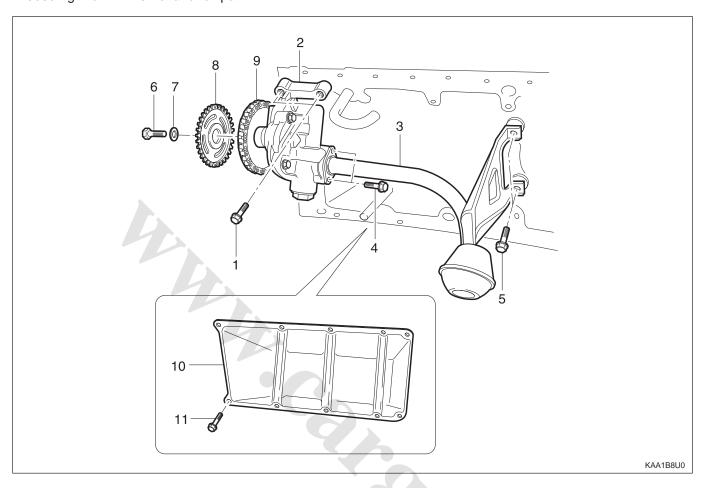
Installation Notice

Tightening Torque	25 N•m (18 lb-ft)
-------------------	-------------------

Replace the seal washer with new one.

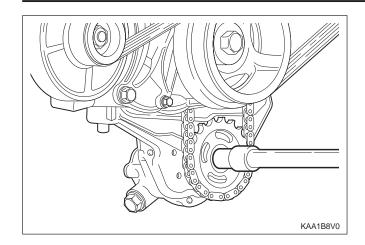
6. Replace the O-ring in the oil filter cover with new one.

Notice: Apply the engine oil to the O-ring.


- 7. Insert new oil filter element into the oil filter housing.
- 8. Temporarily tighten the oil filter cover. Install the Oil filter remover 103 589 02 09 00, and then completely tighten it.

Installation Notice

- 9. Fill up engine oil through the engine oil filler opening (3).
- 10. Check for oil leaks at normal engine temperature after starting the engine.
- Stop the engine and wait 5 minutes.
 Check the oil level and fill up as specified if necessary.


OIL PUMP

Preceding Work: Removal of oil pan

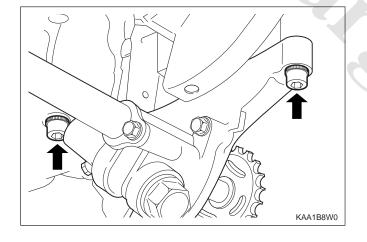
- 2 Oil Pump
- 3 Oil Strainer Assembly

- 6 Bolt (M8 X 20, 1 pieces) 29 35 N•m (21 26 lb-ft)
- 7 Washer
- 8 Sprocket (Oil Pump Drive)
- 9 Chain (Oil Pump Drive)
- 10 Plate-Baffle
- 11 Bolt (M6 X 12, 6 pieces)9 - 11 N•m (80 - 97 lb-in) (Baffle Plate Mounting Bolt)

Removal & Installation Procedure

1. Unscrew the bolt (6) from the oil pump drive sprocket and separate the oil pump drive chain.

Installation Notice


Tightening Torque	29 - 35 N•m (21 - 26 lb-ft)
-------------------	--------------------------------

2. Unscrew the bolts (4, 5) and remove the oil strainer assembly (3).

Installation Notice

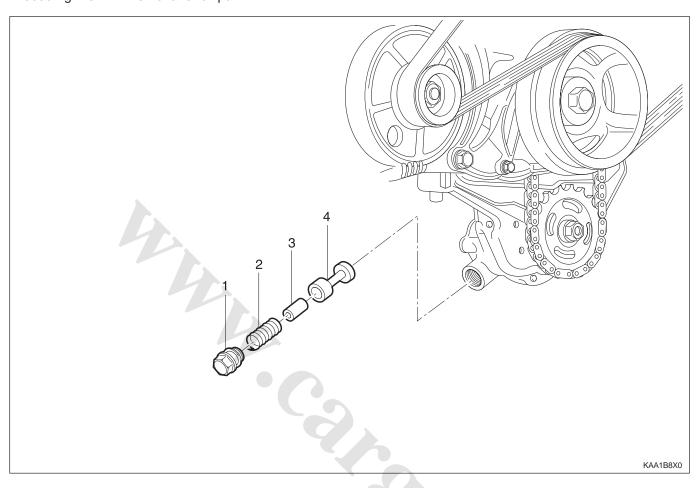
Tightening Torque	Bolt (4): 9 - 11 N•m (80 - 97 lb-ft)
Tightoning Forque	Bolt (5): 9 - 11 N•m (80 - 97 lb-ft)

Insert the steel gasket into the oil pump and bolt (4) mounting surface.

3. Unscrew the six bolts (11) and remove the baffle plate.

Installation Notice

Tightening Torque	9 - 11 N•m (80 - 97 lb-ft)
	(00 07 10 11)


4. Unscrew the three bolt (1) and remove the oil pump.

Installation Notice

Tightening Torque	22.5 - 27.5 N•m (16.6 - 20.3 lb-ft)

OIL PRESSURE RELIEF VALVE

Preceding Work: Removal of oil pan

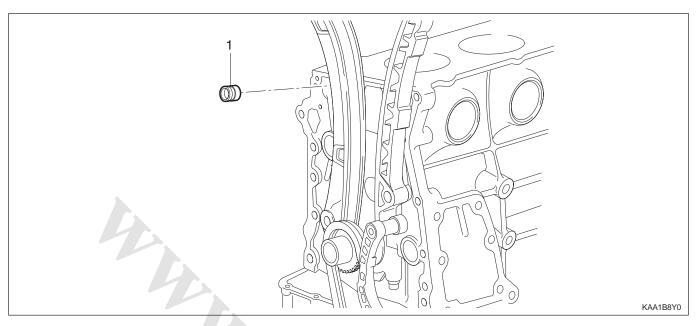
- 1 Screw Plug 50 N•m (37 lb-ft)
- 2 Compression Spring

- 3 Guide Pin
- 4 Piston

Removal & Installation Procedure

1. Remove the screw plug (1).

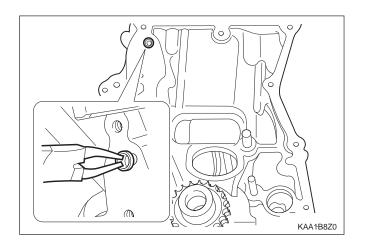
Installation Notice


Tightening Torque	50 N•m (37 lb-ft)
-------------------	-------------------

- 2. Remove the spring (2), guide pin (3) and the piston (4).
- 3. Installation should follow the removal procedure in the reverse order.

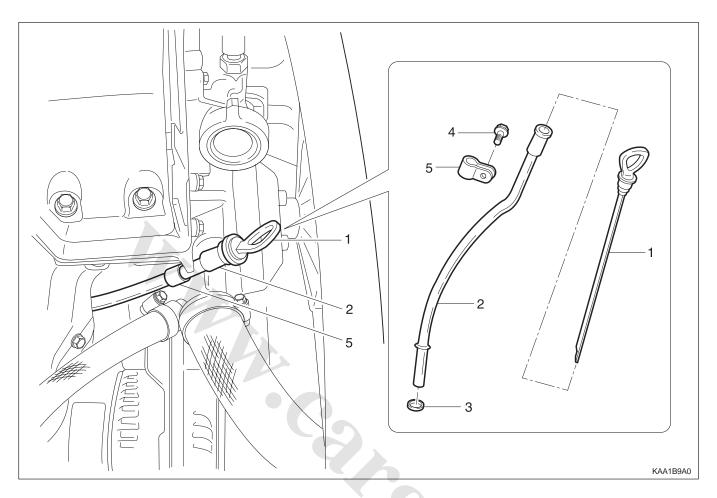
Notice: Don't use the seal for the screw plug.

OIL NON-RETURN VALVE


Preceding Work: Removal of timing gear case cover

1 Oil Non-return Valve

Functions


The non-return valve prevents the oil in the chain tensioner from drying up. In other words, it stops oil-returning in order to prevent the oil in the chain tensioner from getting dry. As a result, the chain tensioner can be activated with oil in itself.

Replacement Procedure

- 1. Remove the non-return valve using a pliers.
- 2. Insert new non-return valve with hand.

OIL DIPSTICK GUIDE TUBE

- 1 Oil Dipstick Level Gauge
- 2 Oil Dipstick Guide Tube
- 3 O-ring

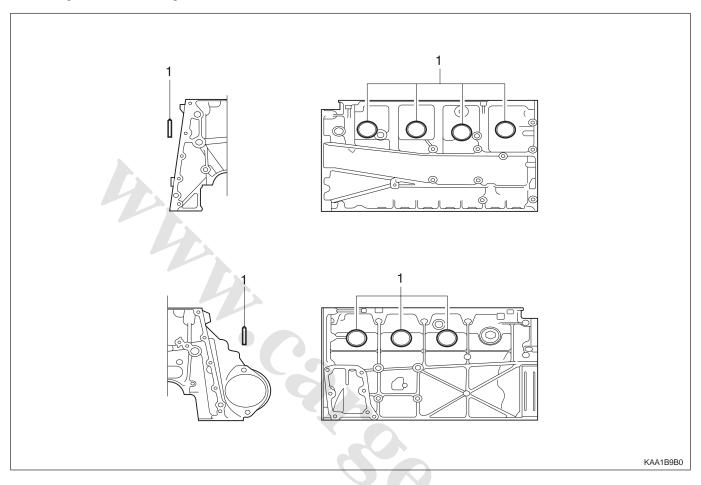
4 Bolt (M6 X 16, 1 piece)9 - 11 N•m (80 - 97 lb-in) 5 Clamp

Removal & Installation Procedure

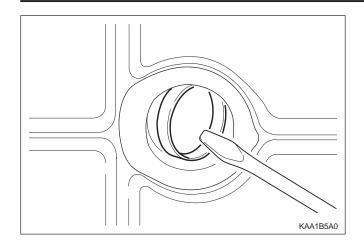
- 1. Pull out the oil dipstick level gauge (1).
- 2. Unscrew the bolt (4) and remove the oil dipstick guide tube (2).

Installation Notice

Lightening Lorque	9 - 11 N•m (80 - 97 lb-ft)
-------------------	-------------------------------


It is very hard to remove the oil dipstick guide tube without special tool. If it is not necessary, do not remove the guide tube.

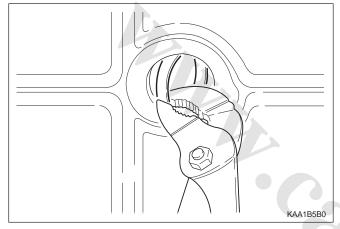
- 3. Installation should follow the removal procedure in the reverse order.
- 4. Check for leaks by starting the engine.


UNIT REPAIR

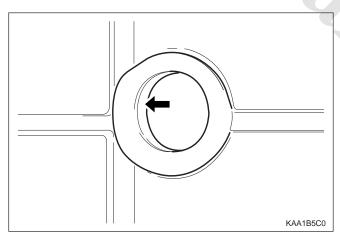
CORE PLUGS IN CRANKCASE

Preceding Work: Draining of the coolant

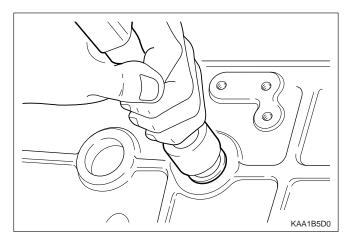
1 Core Plug Replace



Tools Required

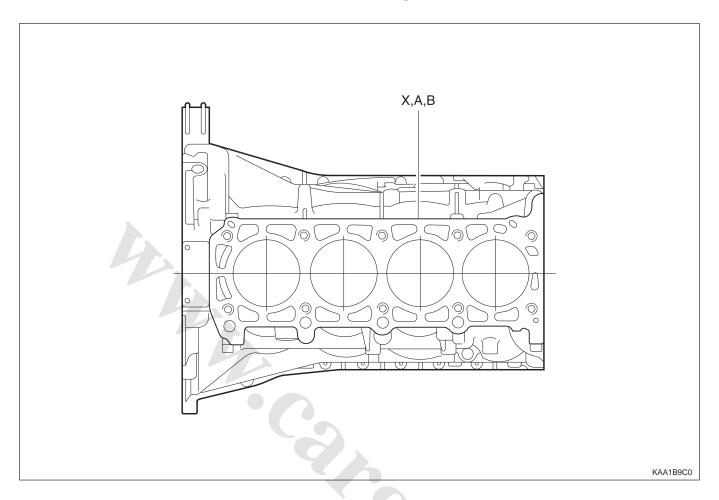

102 589 00 15 00 Drift

Replacement Procedure


- 1. Remove the intake and exhaust manifolds.
- 2. Pull back the core plug until the end of one side comes out using the screw driver.

3. Pull out the plug carefully using a pliers.

4. Clean the sealing surface and apply Loctite 241.



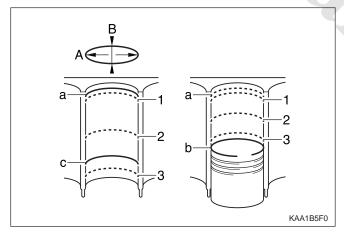
5. Press in new plug using a drift.

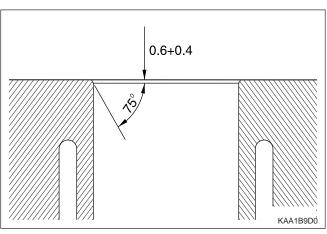
Notice: Wait for about 45 minutes before filling the coolant so that the Loctite 241 hardens.

6. Warm up the engine and check the coolant for leaks.

CYLINDER BORE

Group Code Letter and Cylinder Bore Size

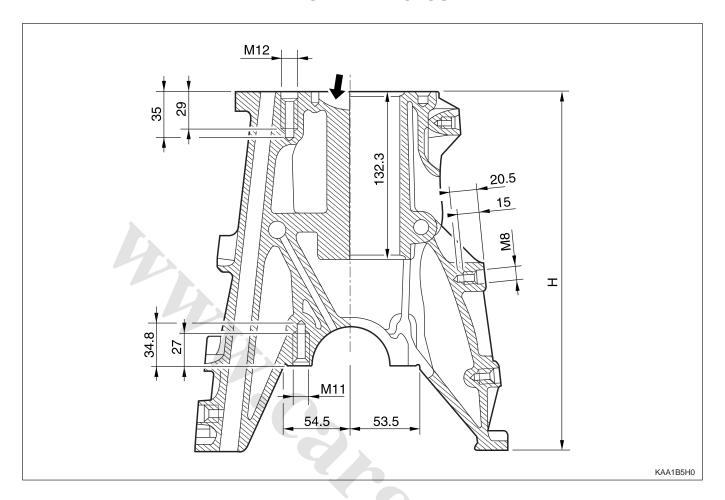

Engine	Group Code Letter of Cylinder	Piston Type to be Used	Cylinder Bore Size (mm)
	A	A or X	φ 90.900 - φφ 90.906
	X	A, X or B	φ 90.906 - φ 90.912
E23	В	X or B	φ 90.912 - φ 90.918
	X + 5	X + 5	φ 90.950 - φ 90.968
	X + 10	X + 10	φ 91.000 - φ 91.018
	A	A or X	φ 89.900 - φ 90.906
	X	A, X or B	φ 89.906 - φ 89.912
E20	В	X or B	φ 89.912 - φ 89.918
	X + 5	X + 5	φ 89.950 - φ 89.968
	X + 10	X + 10	φ 90.000 - φ 90.018


Group Code Letter Cylinder	Group Code Letter 1)	Cylinder Bore Size (mm)
Standard Size	Α	φ 89.900 - φ 89.906
E20 : ϕ 89.9	X	φ 89.906 - φ 89.912
E23 : φ 90.9	В	φ 89.912 - φ 89.918
1st Repair Size	Α	φ 90.150 - φ 90.156
(Standard Size + 0.25)	X	φ 89.156 - φ 90.162
	В	φ 90.162 - φ 90.168
2nd Repair Size	Α	φ 90.400 - φ 90.406
(Standard Size + 0.5)	X	φ 90.406 - φ 90.412
	В	φ 90.412 - φ 90.418

1) The group code letters are carved on the surface of the piston crown and in the mating surface of the crankcase.

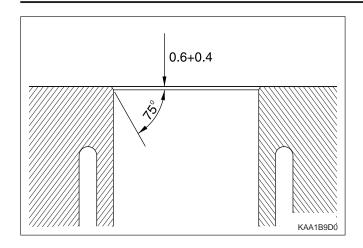
Service Data Standard

Wear Limit in Longitudinal and Transverse Direction		0.1 mm
Permissible Deviation of Cylinder Out-of-round When new		0.007 mm
	Wear limit	0.05 mm
Permissible Deviation of Rectangular Cylinder Height (Exce	0.05 mm	
Basic Peak-to-valley Height After Final Honing and Brushing		0.003 - 0.006 mm
Chamfer Angle		75 °
Honing Angle		50 ° ± 10 °

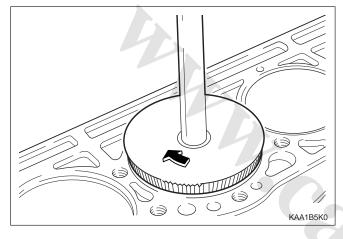


Measurement of Cylinder Bore

- 1. Clean the cylinder wall.
- 2. Using a internal diameter gauge, measure the bore size in axial and transverse direction at three points (1, 2, 3).
 - 1, 2, 3 Measuring Points
 - A. Axial Direction
 - B. Transverse Direction
 - a. Location of the No.1 Piston Ring at TDC
 - b. Location of the Piston BDC
 - c. Location of the Oil Ring at BDC

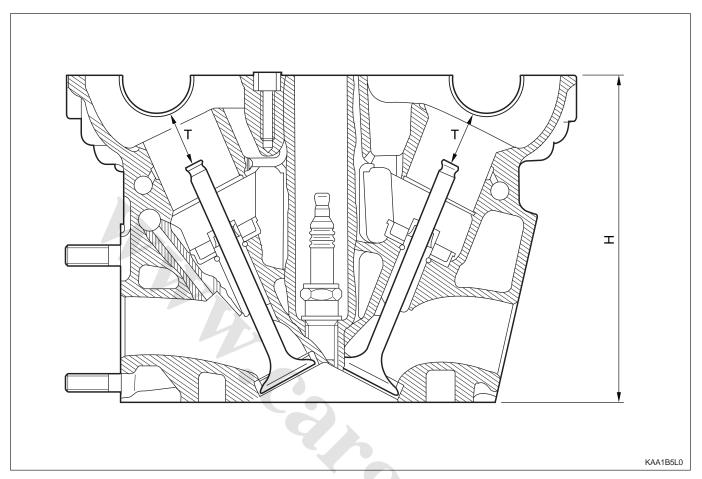

Chamfer Angle

CRANKCASE MATING SURFACE


Service Data Standard

Height of The Crankcase 'H' (When new)		289.35 - 289.45 mm	
Minimum Height After Milling		289.05 mm	
Flatness Crankcase Upper Mating Surface		0.03 mm	
	Crankcase Lower Mating Surface	0.04 mm	
Permissible Deviation of Parallelismof The	Axial Direction	0.1 mm	
Upper to Lower Mating Surface	Transverse Direction	0.05 mm	
Peak-to-valley Height	Crankcase Upper Mating Surface	0.012 - 0.009 mm	
	Crankcase Lower Mating Surface	0.025 - 0.020 mm	

Chamfering Procedure


1. Chamfer angle: 75°

2. Polish the lower chamfered area evenly with a grinder after finishing the chamfering with a suitable tool (e.g., hand milling cutter).

CYLINDER HEAD MATING SURFACE

Preceding Work: Removal of valves

Service Data Standard

Overall Height of Cylinder Head			135.9 - 136.0 mm
Minimum Height After Machining			135.5 mm
Flatness	Axial Direction	Axial Direction	
Transverse Direction			0.0 mm
Distance 'T'	Standard Size	Intake	24.21 - 24.75 mm
(Between Camshaft Bearing		Exhaust	22.21 - 22.75 mm
and Valve Stem)	Valve Stem) Repair Size		23.96 - 24.51 mm
		Exhaust	21.96 - 22.51 mm

Notice: Do not exceed 0.4 mm for the milling of the mating surface of crankcase and cylinder head.

Measurement of Mating Surfac

- 1. Measure the height (H) of the cylinder head (refer to Service data standard).
- 2. Check the mating surface of the cylinder head.
- 3. Mill the sharp edge of the combustion chamber.
- 4. Re-measure the height (H) of the cylinder head.
- 5. Seal the intake and exhaust valves.
- Measure the dimension (T) between the camshaft bearing and the valve system (refer to Service data standard).
- 7. Mill the cylinder head valve seat (refer to Service data standard).

Universal Tool

	Sceledum, Type RTY
Surface Grinding Machine	Roaro
	Schio / Italy

SECTION 1D2 M161 ENGINE COOLING

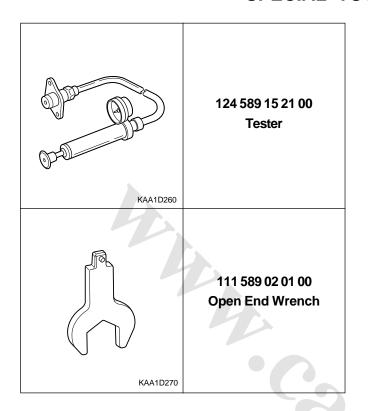
CAUTION: Disconnect the negative battery cable before removing or installing any electrical unit or when a tool or equipment could easily come in contact with exposed electrical terminals. Disconnecting this cable will help prevent personal injury and damage to the vehicle. The ignition must also be in LOCK unless otherwise noted.

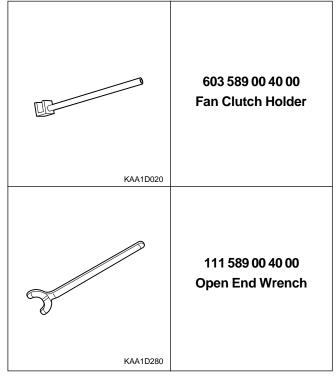
TABLE OF CONTENTS

Specifications1D2-2	On-Vehic
General Specifications	Coolar
Fastener Tightening Specifications	Cooling
Special Tools and Equipment 1D2-3	Water I
Special Tools Table	Thermo
Diagnosis1D2-4	Therm
System Leakage Test 1D2-4	Fan Sh
Maintenance and Repair	Remov

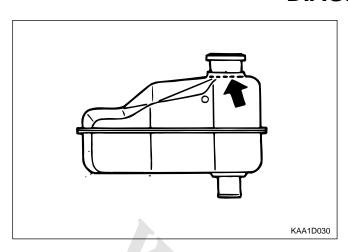
1D2-2	On-Vehicle Service	1D2-5
1D2-2	Coolant Drain and Fill Up	1D2-5
1D2-2	Cooling Fan and Viscous	Clutch 1D2-7
1D2-3	Water Pump	1D2-9
1D2-3	Thermostat	1D2-11
1D2-4	Thermostat Housing Asse	embly 1D2-12
1D2-4	Fan Shroud	1D2-14
1D2-5	Removal and Installation	of Radiator1D2-15

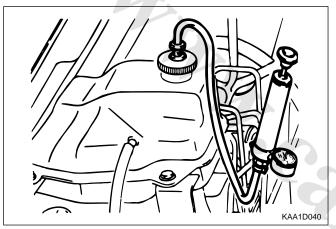
SPECIFICATIONS GENERAL SPECIFICATIONS


Application		Description	
Cooling Type		Water Cooling Forced Circulation	
Radiator	Circulation Type	Down Flow	
	Radiation	61,500 kacl/h	
	Capability	58,000 kcal/h	
Dimension (Width x Height x Thickeness)		680 X 415 X 25 mm	
		680 X 415 X 28 mm	
Cooling Fan		ϕ 460, 9 Blades	
Anti - Freeze Agent		ALUTEC - P78, Dragon Power	
		Coolant A	
Mixing Ratio of Anti - Freeze Agen with Water (Anti-Freeze Agent: Water)		50 : 50	
Coolant Capacity		10.5 L	
Reservoir Capacity		3.4 L	
Cap Operating Pressure (Reservoir Tank Pressure Cap)		1.4 bar	


FASTENER TIGHTENING SPECIFICATIONDS

Application		N•m	Lb-Ft	Lb-In
Automatic Transmission Fluid Cooler Pipe (Eye Bolt)		20 - 35	15	-
Coolant Drain Plug		30	22	-
Cooling Fan Bolts		9 - 11	-	80 - 97
Cooling Fan Shroud Bolts		3-7	-	27 - 62
Engine Hanger Bracket and Coolant Outle	t		40.0.00	
Port Bolt		22.5 - 27.5	16.6 - 20.3	-
Oil Cooler Pipe Line Bolts		9 - 11	-	80 - 97
Radiator Bracket Mounting Bolts		3 - 7	-	27 - 62
Thermostat Cover Bracket Bolts		9 - 11	-	80 - 97
Viscous Clutch		40.5 - 49.5	29.8 - 36.5	-
Water Pump Housing Bolts	M6	9 - 11		80 - 97
	M8	22.5 - 27.5	16.6 - 20.3	_
Water Pump Pulley Retaining Bolts		9 - 11	-	80 - 97


SPECIAL TOOLS AND EQUIPMENT


SPECIAL TOOLS TABLE

DIAGNOSIS

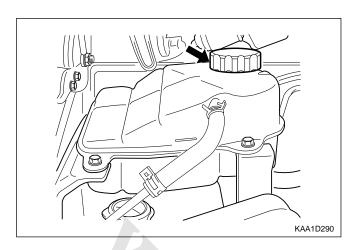
SYSTEM LEAKAGE TEST

Tools Required

124 589 15 21 00 Tester

Test Procedure

1. Loosen the cap a little and release pressure and remove the acp.

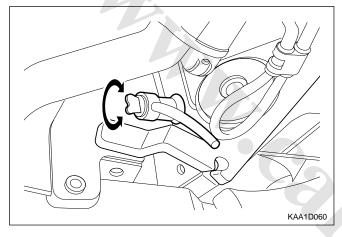

Notice: For the risk of scalding, acp must not be opened unless the coolant temperature is below 90°C.

- 2. Fill coolant up to upper edge (arrow) of reservoir.
- 3. Connect the special tool to the reservoir filler cap and apply 1.4 bar of pressure.

Tester 124 589 15 21 00

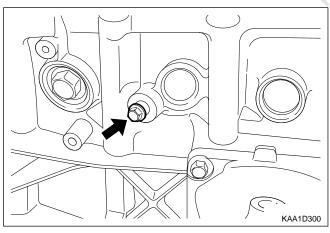
4. If the pressure on the tester drops, check leakage at the all coolant hoses and pipes and each connections. Replace pr retighten if necessary.

MAINTENANCE AND RIPAIR


ON-VEHICLE SERVICE

COOLANT DRAIN AND FILL UP

Draining & Filling up Procedure

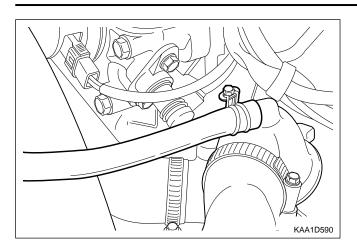

1. Loosen the cap a little and release pressure and remove the cap.

Notice: For the risk of scalding, the cap must not be opened unless the coolant temperature is below 90°C.

Loosen the radiator lower drain cock and drain the coolant.

Notice: Collect coolant by using a proper container.

 Drain the coolant from the crankcase by inserting a hose (dia. 14 mm) onto the drain bolt on the side of crankcase (exhaust manifold) and by loosening the plug.

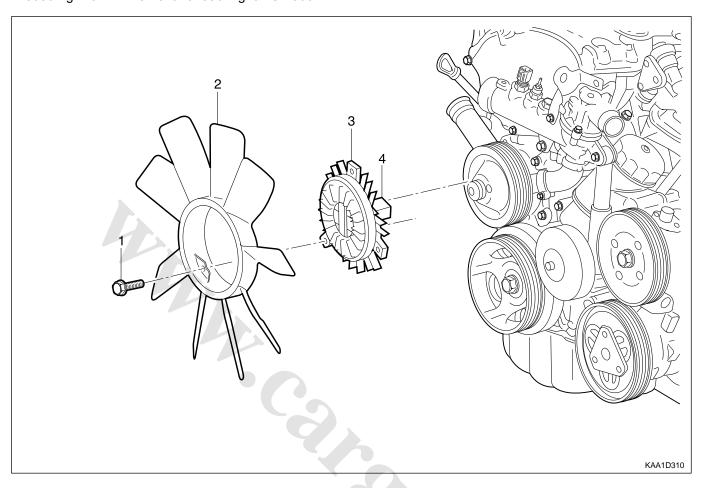

Notice:

- Just loosen the drain plug to drain the coolant and do not remove the plug completely.
- Collect the coolant by using proper container.
- 4. After complete draining of the coolant, remove the hose connector to drain plug and reinstall the drain plug.

Installation Notice

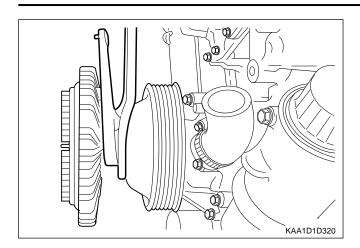
Tightening Torque	30 N•m (22 lb-ft)
rigitteriirig rorque	30 NºIII (22 ID-II)

5. Tighten the radiator lower drain cock.


- 6. Remove the de-aeration hose clamp in the coolant pump and remove the de-aeration hose.
- 7. Fill up the coolant through the coolant reservoir tank.

Notice:

- Match the anti-freeze and the water ratio to 50:50.
- Supplement the coolant until the coolant overflows to the deaeration hose.
- 8. Insert the de-aeration hose and completely tighten the clamp.
- Check the coolant level in the coolant reservoir tank.
- 10. Warm up (until thermostat is opened) the engine and recheck the coolant level in the reservoir tank and fill up the coolant if necessary.


COOLING FAN AND VISCOUS CLUTCH

Preceding Work: Removal of cooling fan shroud

- 1 Bolt (M6 X 14, 3 piece) 9 - 11 N•m (80 - 97 lb-in)
- 2 Cooling Fan

- 3 Viscous Clutch
- Union Nut (Left Threaded Screw) 40.5 - 49.5 N•m (29.8 - 36.5 lb-ft)

Tools Required

111 589 02 01 00 Open End Wrench 111 589 00 40 00 Open End Wrench

Removal & Installation Procedure

- 1. Install the holder (111 589 00 40 00) to the bolt at the pulley as shown in the right figure to hold the pulley.
- 2. Remove the viscous clutch using an open end wrench 111 589 02 01 00.

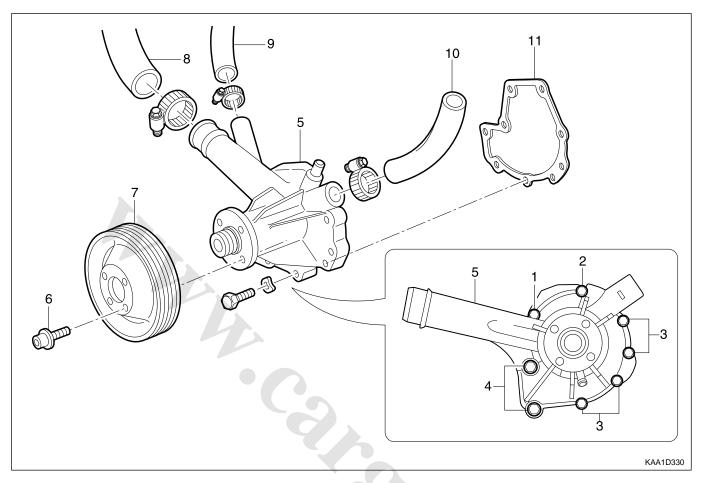
Installation Notice

The union nut is left threaded screw.

Tightening Torque	40.5 - 49.5 N•m	
rightening rolque	(29.8 - 36.5 lb-ft)	

3. Remove the 3 bolts (1) from the viscous clutch and remove the cooling fan and the viscous clutch.

Installation Notice

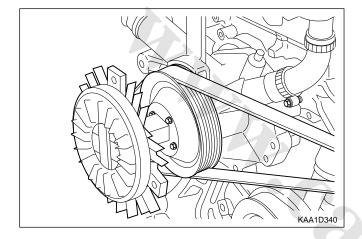

Tightening Torque	9 - 11 N•m (80 - 97 lb-in)
	(00 07 10 111)

Notice: You may change the procedure (2) and (3) if necessary.

Installation should follow the removal procedure in the reverse order.

WATER PUMP

Preceding Work: Removal of viscous clutch

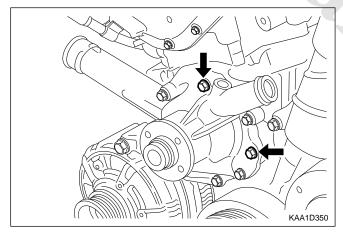

- 5 Water Pump Housing
- 6 Bolt (M6 X 16, 4 piece)
- 7 Water Pump Pulley
- 8 Coolant Inlet Hose
- 9 Heater Hose
- 10 Coolant Bypass Hose
- 11 Gasket

Tools Required

124 589 15 21 00 Tester

Removal & Installation Procedure

- 1. Drain the coolant.
- 2. Disconnect the coolant hoses (8, 9, 10).
- 3. Tak off the drive belt.



4. Unscrew the four bolts (6) from water pump pulley and remove the pulley (7)

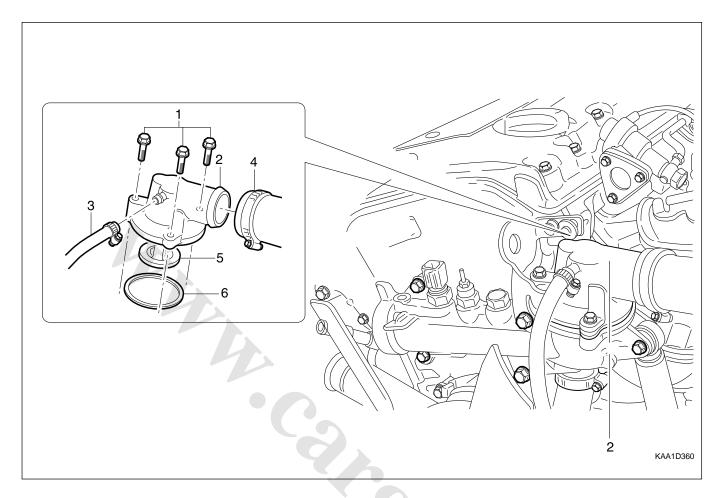
Installation Notice

Tightening Torque	9 - 11 N•m (80 - 97 lb-in)
-------------------	-------------------------------

Notice: Hold the pulley with fan clutch holder 603 589 00 40 00 while removing the pulley.

5. Unscrew the bolts (1, 2, 3, 4) from water pump housing (5) and remove the water pump.

Installation Notice


Tightening	(1, 2, 3)	9 - 11 N•m (80 - 97 lb-in)
Torque	(4)	22.5 - 27.5 N•m (16.6 - 20.3 lb-ft)

- 6. Clean the sealing surface.
- 7. Replace the gasket with new one.

Notice: Apply the sealant when the sealing surface of water pump housing and coolant mounting area is clean.

- 8. Installation should follow the removal procedure in the reverse order.
- 9. Check for leaks by starting the engine.

THERMOSTAT

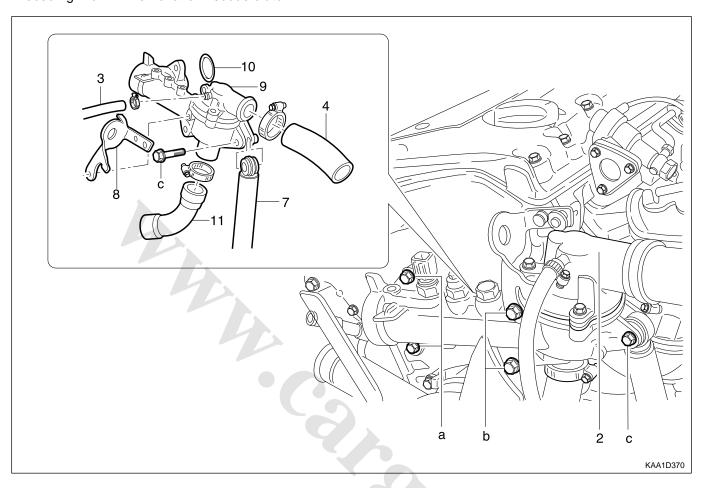
- 1 Bolt (M6 X 25, 3 pieces) 9 11 N•m(80 97 lb-in)
- 2 Thermostat Cover
- 3 De-aeration Hose

- 4 Coolant Outlet Hose
- 5 Thermostat
- 6 O-ring

Removal & Installation Procedure

- 1. Drain coolant from the radiator.
- 2. Loosen the hose mounting clip and remove the coolant hose (3, 4)
- 3. Unscrew the three bolts (1) and remove the thermostat cover assembly thermostat housing.

Installation Notice


Tightening Torque	9 - 11 N•m (80 - 97 lb-in)
	(00 07 10 111)

Do not separate the thermostat cover and thermostat.

- 4. Replace the O-ring of necessary.
- 5. Check the leakage in the cooling system.

THERMOSTAT HOUSING ASSEMBLY

Preceding Work: Removal of viscous clutch

- 1c Bolt (M8 X 35, 1 piece) 22.5 27.5 N•m (16.6 20.3 lb-ft)
- 2 Thermostat Housing Assembly

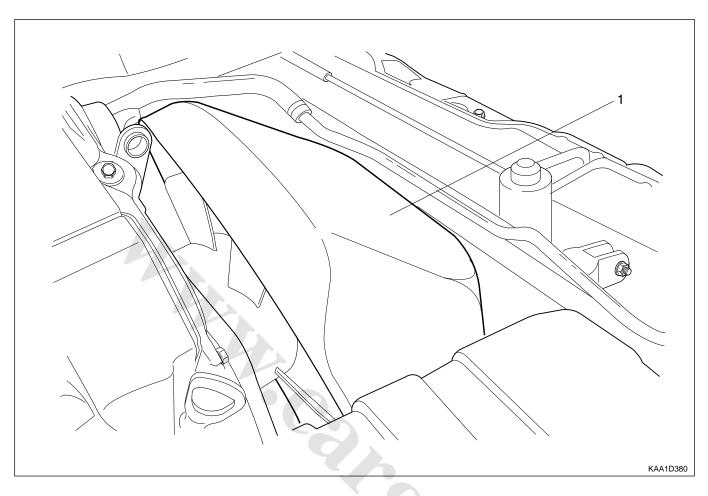
- 3 O-ring
- 4 De-aeration Hose
- 5 Coolant Outlet Hose
- 6 Coolant Bypass Hose
- 7 Tensioning Device Shock Absorber
- 8 Engine Hanger Brocket

Removal & Installation Procedure

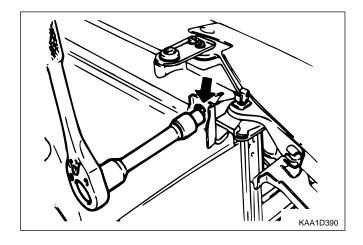
- 1. Drain coolant.
- 2. Remove the de-aeration hose (4), coolant outtlet hose (5) and coolant bypass hose (6).
- 3. Disconnect the coolant temperature sensor connector.
- 4. Unscrew the bolt (1c) and pry off the tensioning device shock absorber (7).

Installation Notice

Tightening Torque	22.5 - 27.5 N•m (16.6 - 20.3 lb-ft)
-------------------	--


5. Unscrow the bolts (1a, 1b) and remove the engine hanger bracket and thermostat housing.

Installation Notice


Tightening Torque	(1a)	9 - 11 N•m (80 - 97 lb-in)
	(1b)	22.5 - 27.5 N•m (16.6 - 20.3 lb-ft)

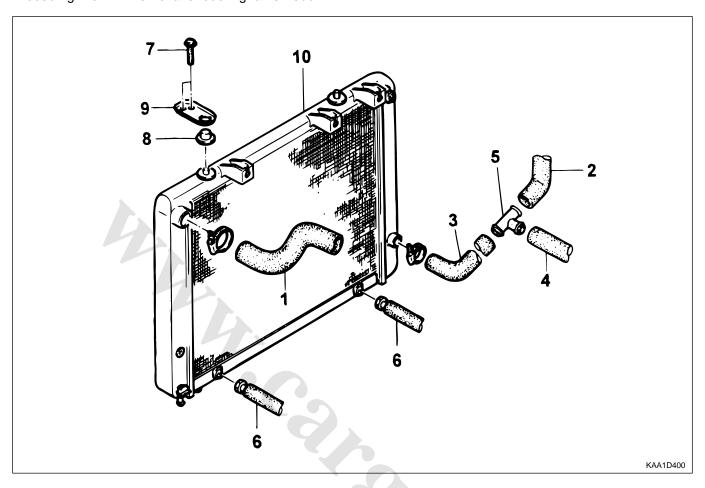
- 6. Replace the O-ring with new one.
- 7. Installation should follow the removal procedure
 - 8. Check for leaks in cooling system.

FAN SHROUD

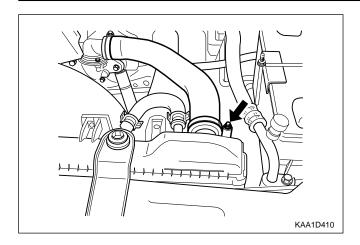
1 Fan Shroud

Removal & Installation Procedure

1. Unscrew two bolts from cooling fan shroud and remove the shroud.


Installation Notice

Tightening Torque	3 - 7 N•m (27 - 62 lb-in)
-------------------	------------------------------


2. Installation should follow the removal procedure in the reverse order.


REMOVAL AND INSTALLATION OF RADIATOR

Preceding Work: Removal of cooling fan shroud

- 1 Inlet Hose
- 2 Hose (to Engine)
- 3 Hose (to 3-way Connector)
- 4 Make-up Hose (to Coolant Reservoir)
- 5 3-way Connector
- 6 Automatic Transmission Oil Cooling Hose (A/T Equippend Vehicle)
- 7 Bolt (M6 X 20, 4 pieces)
 - 3 7 N•m(27 62 lb-in)
- 8 Insulator
- 9 Radiator Bracket
- 10 Radiator

Removal & Installation Procedure

- 1. Drain coolant from the radiator.
- 2. Remove the coolant thermo connector from the radiator.
- 3. Remove the each coolant hoses.
- 4. Remove the automatic transmission fluid cooler pipes from radiator.

Tightening Torque	20 N•m (15 lb-ft)
3 - 3 - 1 - 1	- (/

5. Remove all the bolt (7) from the radiator bracket (9) and remove the bracket (9) and insulator (8).

Installation Notice

Tightening Torque	3 - 7 N•m (27 - 62 lb-in)
-------------------	------------------------------

- 6. Remove the radiator (10).
- 7. Check the radiator pin for crack, damage, leakage and bending and replace it if necessary.
- 8. Installation is reverse order of removal.

9. Check for leakage in the cooling system.

SECTION 1E2 M161 ENGINE ELECTRICAL

CAUTION: Disconnect the negative battery cable before removing or installing any electrical unit or when a tool or equipment could easily come in contact with exposed electrical terminals. Disconnecting this cable will help prevent personal injury and damage to the vehicle. The ignition must also be in LOCK unless otherwise noted.

TABLE OF CONTENTS

Specifications	. 1E-2	Generator	1E-3
Generator Specifications	. 1E-2	Starting Motor	1E-4
Starting Motor Specifications	. 1E-2	Battery	1E-5
Battery Specifications	. 1E-2	Spark Plug	1E-6
Fastener Tightening Specifications	1E-2	Ignition Cable	1E-8
Maintenance and Repair	. 1E-3	Unit Repair	1E-11
On-Vehicle Service	1E-3	Battery	1E-11

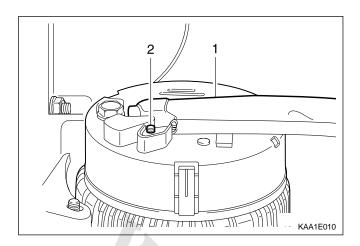
SPECIFICATIONS

GENERAL SPECIFICATIONS

Application	Description
Current	115 A
Output Voltage	12 -14 v
Resistance Between Rotor Core and Slip Ring	Ω

STARTER SPECIFICATIONS

Application	Description
Output Power	1.2 kw
Voltage	12 v


BETTERY SPECIFICATIONS

Application	Description
Capacity	90 AH
Max. Tolerance Between Cells	≥ 0.04
Specific Gravity	≥1.24

FASTENER TIGHTENING SPECIFICATIONS

Application	N•m	Lb-Ft	Lb-In
Batter Mounting Bracket Nut	12 - 18	9 - 13	-
Batter Negative Cable	12 - 18	9 - 13	-
Batter Positive Cable	12 - 18	9 - 13	-
Battery Cable Nut on Starting Motor	12 - 15	9 - 11	-
Electric Wire Nut on Starting Motor	6 - 7		53 - 62
Generator Mounting Bolt	25	18	-
Generator Terminal B+ Nut	14 - 18	10 - 13	-
Generator Terminal D+ Nut	4 - 5		35 - 44
Ignition Cable Bolt	9 - 11	-	80 - 97
Spark Plug	20 - 30	15 - 22	-
Spark Plug Cover Bolt	9 - 11	-	80 - 97
Starting Motor Mounting Bolt	35 - 48	26 - 35	-

MAINTENANCE AND REPAIR

ON-VEHICLE SERVICE

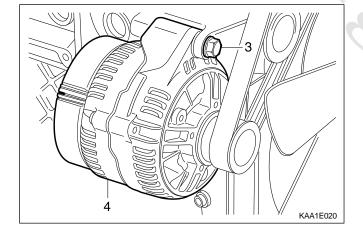
GENERATOR

Preceding Work: Removal of the polly drivebelt

Removal & Installation Procedure

- 1. Disconnect the negative battery terminal.
- 2. Unscrew the nut and disconnect the terminal (1).

Installation Notice

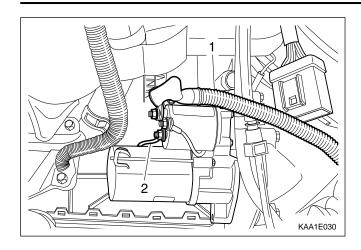

Tightening Torque	14 - 18 N•m
rightening rorque	(10 - 13 lb-ft)

3. Unscrew the nut and disconnect the terminal (2).

Installation Notice

Tightening Torque	4 - 5 N•m
rigitioning rorque	(35 - 44 lb-in)

- 1 Terminal (B+)
- 2 Terminal (D+)



4. Unscrew the combination bolt (3).

Installation Notice

Tightening Torque	25 N•m (18 lb-ft)

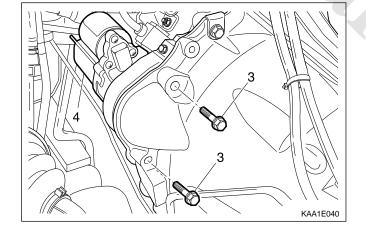
- 5. Remove the generator.
- 6. Installation should follow the removal procedure in the reverse order.
 - 3 Generator Mounting Bolt
 - 4 Generator

STARTING MOTOR

Removal & Installation Procedure

- 1. Disconnect the ground cable.
- 2. Unscrew the nut and disconnect the battery cable (1).

Installation Notice

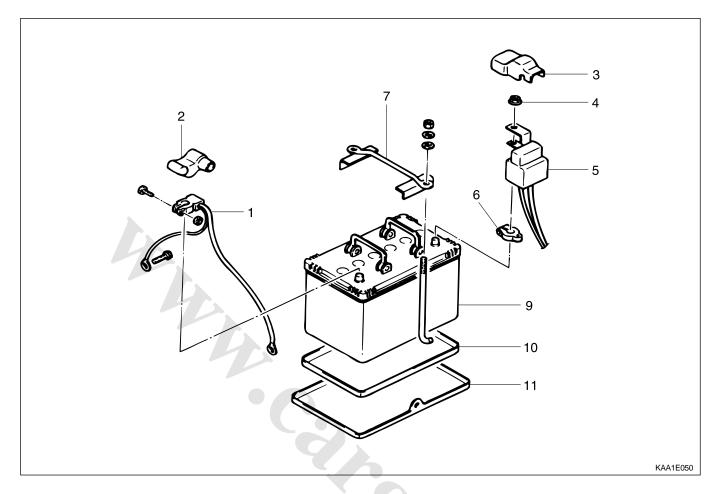

Tightening Torque	12 - 15 N•m
	(9 - 11 lb-ft)

3. Unscrew the nut and disconnect the engine electric wire (2).

Installation Notice

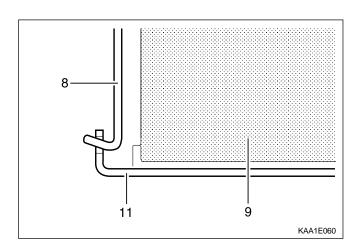
Tightoning Torque	6 - 7 N•m	
Tightening Torque	(53 - 62 lb-in)	

- 1 Bettery Cable
- 2 Engine Electric Wire


4. Unscrew the combination bolt (3) of starting motor.

Installation Notice

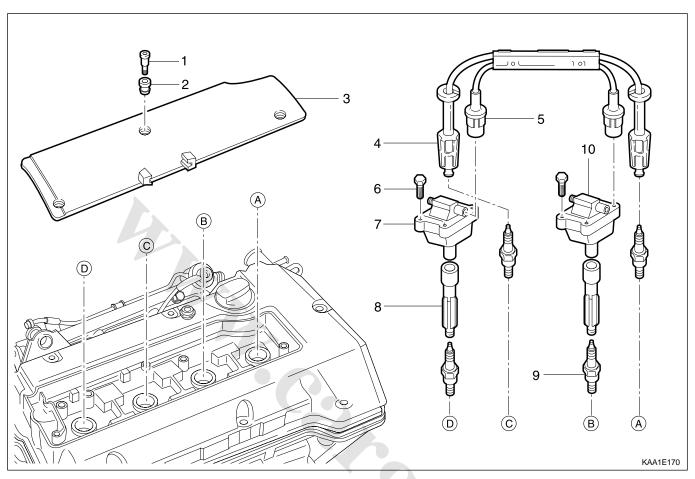
Tightening Torque	35 - 48 N•m	
	(26 - 35 lb-ft)	


- 5. Remove the generator.
- 6. Installation should follow the removal procedure in the reverse order.
 - 3 Fixing Bolt
 - 4 Starting Motor

BATTERY

- 1 Cable Terminal (-)
- 2 Cable Terminal Cap (-)
- 3 Cable Terminal Cap (+)
- 4 Nut
- 5 Fuseblink Box
- 6 Terminal (+)

- 7 Battery holddown Bracket
- 8 Battery Clamp Bolt
- 9 Battery
- 10 Sub Tray
- 11 Battery Tray


Removal & Installation Procedure

Notice:

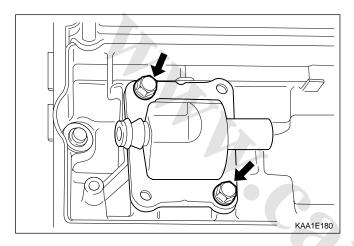
- Disconnect the negative battery cable first.
- Insert the clamp bolt (8) into the battery tray hole
 (11) from inside when installing.

SPARK PLUG

Preceding Work: Removal of intake air duct

- 1 Screw (3 pieces) 9 11 N•m (80 97 lb-in)
- 2 Adaptor (3 pieces)
- 3 Ignition Coil Cable Cover
- 4 Spark Plug Connector
- 5 Ignition Coil Connector

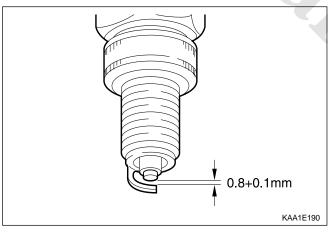
- 6 Bolts (M6 X 25, 4 pieces)
- 7 Ignition Coil (T1/1)
- 8 Coupling Plug
- 9 Spark Plug 20 30 N•m (15 22 lb-ft)
- 10 Ignition Coil (T1/2)


Replacement Procedure

1. Unscrew the three screws (1) and remove the spark plug cable cover.

Installation Notice

Tightening Torque	9 - 11 N•m
rigittorining rorquo	(80 - 97 lb-in)


2. Disconnect the cable from ignition coil and spark plug.

3. Unscrew two bolts (M6 X 25) from each ignition coil and remove the ignition coil (arrow).

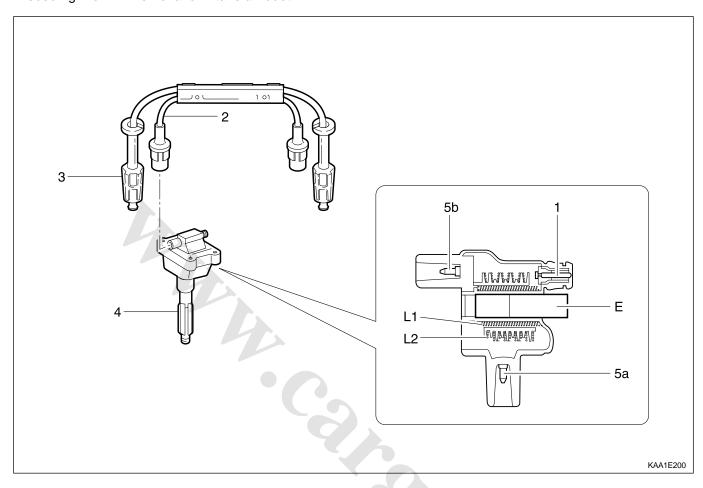
Installation Notice

Tightening Torque	9 - 11 N•m
	(80 - 97 lb-in)

4. Remove the spark plug.

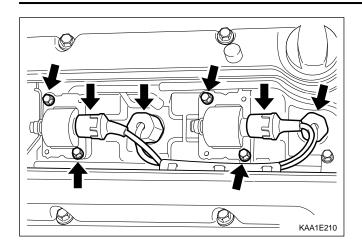
Installation Notice

Tightening Torque	20 - 30 N•m (15 - 22 lb-ft)
Clearance	0.8 + 0.1 mm


Notice:

- Tighten the spark plug with specified torque.
- Install the ignition coil to number 2 and 4 cylinder, and connect the cable to number 1, 4 and 2, 3 cylinder.

T1/1 : cylinder 1 and 4T1/2 : cylinder 2 and 3


IGNITION CABLE

Preceding Work: Removal of intake air duct

- 1 Control Cable Connection
- 2 Ignition Cable
- 3 Spark Plug Connector
- 4 Coupling Plug

- 5a, 5b Secondary Voltage Connection
 - E Iron Core
 - L1 Secondary Ignition Coil
 - L2 Primary Ignition Coil

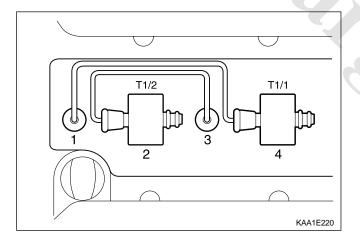
Removal & Installation Procedure

- 1. Disconnect the battery negative cable.
- 2. Unscrew the 3 screws and remove the ignition cable duct cover.

Installation Notice

Tightening Torque	9 - 11 N•m
	(80 - 97 lb-in)

- 3. Seperate the cable from the ignition cable and the spark plug.
- 4. Remove the 2 bolts from each ignition cable and remove the ignition cables.

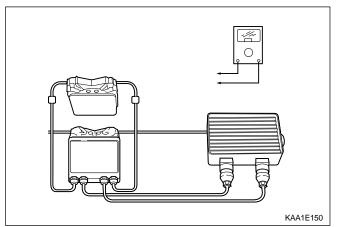

Installation Notice

Tightening Torque	9 - 11 N•m
	(80 - 97 lb-in)

Install the ignition cable to the cylinder 2 and 4 and connect the cable from 1 to 4, and from 2 to 3.

T1/1 : Cylinder 1 and 4T1/2 : Cylinder 2 and 3

5. Installation should follow the removal procedure in the reverse order.



Ignition Cable and Cable Lay-out

1. Firing order: 1 - 3 - 4 - 2

2. T1/1: Connect the cylinder 1 + 4

3. T1/2: Connect the cylinder 2 + 3

Inspection & Maintenance Procedure (for MSE)

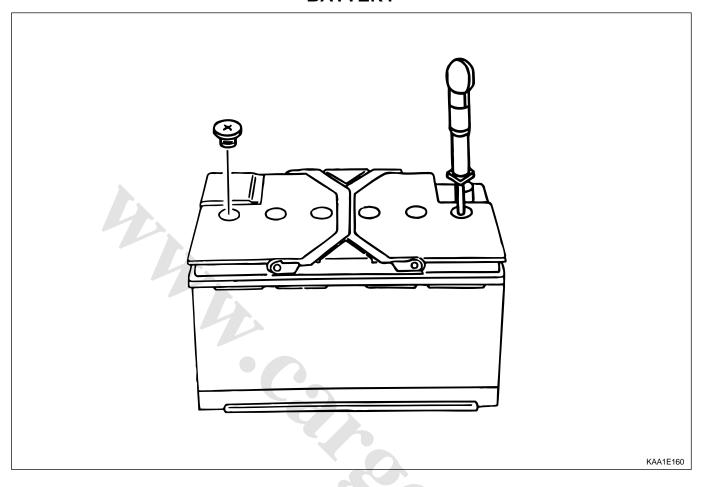
 Measure the primary resistance between the cable terminals 1 and 15 after removing the ignition cable wiring connector (1 and 15) with ignition switch OFF.

Notice: Replace the ignition coil if out of the specified resistance.

2. Measure the primary voltage (T1/1) between the ECU terminals No. 72 and No. 69 during the engine cranking (starter motor activated).

• T1/2: between No. 71 and No. 69

Notice: Check the ignition cable and the ECU if out of the specified value.


3. Using a multi-tester, measure the secondary coil resistance between 5a and 5b.

Specified Value	6 - 8.5 kΩ

UNIT REPAIR

BATTERY

Inspection

Notice:

- When charging the battery, do not leave the inflammable objects around it.
- When checking the electrolyte of battery, put on an eye protector and gloves.
- 1. Inspect the surface of the battery and replace if any defects were found on it.
 - 2. Check if the specific gravity of the electrolyte is within the specified value.

Battery capacity	90
Battery specific gravity	≥ 1.24
Max. tolerance between cells	≥ 0.04

Notice:

- Replace the battery if the maximum tolerance of the electrolyte between cells is out of the specified value.
- Measure the specific gravity in the approx. 20°C of ambient temperature.
- 3. Replenish the electrolyte if necessary.

SECTION 1F2

M161 ENGINE CONTROLS

CAUTION: Disconnect the negative battery cable before removing or installing any electrical unit or when a tool or equipment could easily come in contact with exposed electrical terminals. Disconnecting this cable will help prevent personal injury and damage to the vehicle. The ignition must also be in LOCK unless otherwise noted.

TABLE OF CONTENTS

Engine and ECM Problem Check Report	. 1F2-2	Cooling Fan	1F2-72
Specifications	1F2-3	A/C Compressor Relay	1F2-73
Engine Data Display Table	. 1F2-3	Cruise Control Switch	1F2-74
Fastener Tightening Specifications	. 1F2-4	Traction Control System (TCS)	1F2-75
Fuel System Specification	. 1F2-5	Stop Lamp Switch	1F2-76
Temperature vs Resistance	. 1F2-5	Engine RPM	1F2-77
Special Tools and Equipment		Exhaust System	1F2-78
Special Tools Table	. 1F2-6	Catalytic Converter	1F2-78
Schematic and Routing Diagrams		Oxygen Sensor	1F2-80
ECM Wiring Diagram (MSE 3.53S)		Engine Control Module	1F2-86
Diagnosis		Serial Data Communication	1F2-88
Failure Code Diagnosis		Internal Failure	1F2-90
Clearing Failure Codes		Electronic Throttle Controller Safety Malfunction	. 1F2-92
Failure Codes Table		Immobilizer	1F2-94
Ignition System		Maintenance and Repair	. 1F2-95
Ignition Coil		On-Vehicle Service	1F2-95
Crankshaft Position (CKP) Sensor		Discharging the Pressure in Fuel System	1F2-95
Camshaft Position (CMP) Sensor		Fuel Pump	1F2-95
Camshaft Actuator		Fuel Filter	1F2-96
Knock Sensor (KS)		Fuel Tank	1F2-97
Spark Plug		Fuel Pressure Regulator	1F2-98
System Voltage		Fuel Rail and Injector	1F2-99
Ignition Switch		Engine Coolant Temperature Sensor	1F2-100
Fuel System		Throttle Body (Integrated with the Actuator)	1F2-101
Fuel Pump		Hot Film Air Mass (HFM) Sensor	1F2-102
Fuel Injector	1F2-46	Knock Sensor	1F2-102
Purge Control Valve		Pedal Position Sensor	1F2-103
Fuel Rail		Oxygen Sensor	1F2-103
Fuel Pressure Regulator	1F2-54	Purge Control Valve	1F2-104
Induction System		Canister	1F2-104
Throttle Valve Actuator		Camshaft Position Sensor	1F2-104
Hot Film Air Mass (HFM) Sensor		Crankshaft Position Sensor	1F2-105
Engine Coolant Temperature (ECT) Sensor		Engine Control Module	1F2-105
Accelerator Pedal Module			

ENGINE AND ECM PROBLEM CHECK REPORT

VEHICLE AND CUSTOMER INFORMATION

Date Problem Occurred		
Customer Name	Vehicle Model	
Driver Name	VIN	
Purchase date	Engine Model	
License No.	Km	
License No.	Mileage	miles

MIL INFORMATION

Condition of MIL	☐ Remains on	☐ Sometimes illuminates	☐ Does not illuminate
DTC inspection	☐ Normal	☐ Malfunction code(s) (code)
(if available)	☐ Freeze frame data	()	

PROBLEM DESCRIPTION

☐ Engine Does Not Start	☐ No cranking	☐ No initial combustion	☐ No complete combustion
☐ Hard to Start	☐ Slow cranking		
	☐ Others		
☐ Poor Idling	☐ Incorrect first Idle	☐ Abnormal idle rpm ☐ High	n (rpm)
	☐ Idling Unstable	☐ Others	
☐ Poor Driveability	☐ Hesitation ☐ Ba	ack fire	ter-burning)
	☐ Surging ☐ Kr	ocking	☐ Other
☐ Engine Stall	☐ Soon after starting	☐ After accelerator pedal depr	essed
	☐ After accelerator p	edal released During A/C o	pperation
	☐ Shifting from N to I	O or D to N	
	☐ At full steering	☐ Others	
☐ Others			

CONDITION WHEN PROBLEM OCCURS

Problem Frequency	☐ Constant	☐ Intermittent (times per day/n	nonth) 🗆 C	Once only	☐ Others
Weather	□ Fine	☐ Cloudy	☐ Rainy	☐ Snowy	□ Var	ious/Others
Ambient Temperature	☐ Hot	□ Warm	□ Cool	□ Cold (ap	oprox°F	=/°C)
Place	☐ Highway	☐ Suburbs	□ Inner City	□ Uphill	□ Dov	wnhill
	☐ Rough Roa	ad □ Othe	ers			
Engine Temperature	□ Cold	☐ Warming Up	□ Before warr	ming up 🛚	After warm-	up
	☐ Any temp.	☐ Others				
Engine Operation	☐ Starting	☐ Just after st	arting (min.)	☐ Idling	☐ Racing	☐ Driving
	☐ Constant s	peed □ Acc	eleration	□ Deceler	ration	
	☐ A/C switch	ON/OFF □	Other			

SPECIFICATIONS

ENGINE DATA DISPLAY TABLE

Parameter	Unit	Value
Engine Coolant Temp.	°C	greater than 95 °C after warm up
	_	-40 ~ 130 °C (varies with ambient
Intake Air Temp.	°C	temp. or engine mode)
Engine RPM	rpm	700 ± 50 (P/N), 600 ± 50 (D)
Regular RPM	rpm	700 ± 50 (P/N), 600 ± 50 (D)
Engine Load	%	18 ~ 25 %
Mass Air Flow Meter	Kg/h	16 ~ 25 Kg/h
Throttle Position Angle	°TA	0 °TA (up to 100 °TA at the wide open throttle)
Spark Advance	°CA	°CA (6 ~ 9 °CA)
Indicated Engine Torque	Nm	Varies with engine condition
Injection Time	ms	3 ~ 5 ms
Battery Voltage	V	13.5 ~ 14.1 V (engine running)
Front Axle Speed	Km/h	0 ~ 265 Km/h
Rear Axle Speed	Km/h	0 ~ 265 Km/h
Accel. Pedal Position 1	V	0.4 ~ 4.8 V
Accel. Pedal Position 2	V	0.2 ~ 2.4 V
Throttle Position 1	V	0.3 ~ 4.6 V
Throttle Position 2	V	0.3 ~ 4.6 V
Fuel Integrator		0.8 ~ 1.2
Oxygen Sensor	mv	100 ~ 900 mv
A/C S/W Condition	1=ON/0=OFF	-
Full Load State	1=ON/0=OFF	-
Shift Gear State (A/T)	1=ON/0=OFF	-
A/C Control State	1=ON/0=OFF	-
Clutch Switch (M/T)	1=ON/0=OFF	-
Cam Actuator State	1=ON/0=OFF	
Knocking Control	1=ON/0=OFF	-
Protect Mission	1=ON/0=OFF	1.60
Purge Control Valve	1=ON/0=OFF	-
Lambda Function	1=ON/0=OFF	-
Catalyst Heating	1=ON/0=OFF	-
Overrun Fuel Cut	1=ON/0=OFF	-
Full Fuel Cut	1=ON/0=OFF	-
Brake Switch	1=ON/0=OFF	-
Cruise Control Status	1=ON/0=OFF	-

^{*} Condition : Warmed up, idle, P/N or neutral

FASTENER TIGHTENING SPECIFICATIONS

Application	N∙m	Lb-Ft	Lb-In
Camshaft Position Sensor Retaining Bolts	10	-	89
Canister Mounting Bolts	6	-	53
Coolant Temperature Sensor	30	22	-
Crankshaft Position Sensor Retaining Bolt	10	-	89
Engine Control Module (ECM) Mounting Bracket Nuts	10	-	89
Fuel Filter Mounting Bracket Bolt	6	-	53
Fuel Filter Lines	28	21	-
Fuel Pressure Test Connector	25	18	-
Fuel Rail Assembly Bolts	25	18	-
Fuel Return And Supply Lines	23	17	-
Fuel Tank Retaining Nuts	38	28	-
Knock Sensor Mounting Bolt	25	18	-
Oxygen Sensor	55	41	-
Pedal Position Censor Mounting Bolts And Nut	6	-	53
Throttle Body Bolts	12	-	106

FUEL SYSTEM SPECIFICATION

Use Only Unleaded Fuel Rated at 89 Octane or Higher

Fuel quality and additives contained in fuel have a significant effect on power output, drivability, and life of the engine.

Fuel with too low an octane number can cause engine knock.

Caution: Use of fuel with an octane number lower than 89 may damage engine and exhaust system.

Notice: To prevent accidental use of leaded fuel, the nozzles for leaded fuel are larger, and will not fit the fuel filler neck of your vehicle.

Do Not Use Methanol

Fuels containing methanol (wood alcohol) should not be used in vehicle.

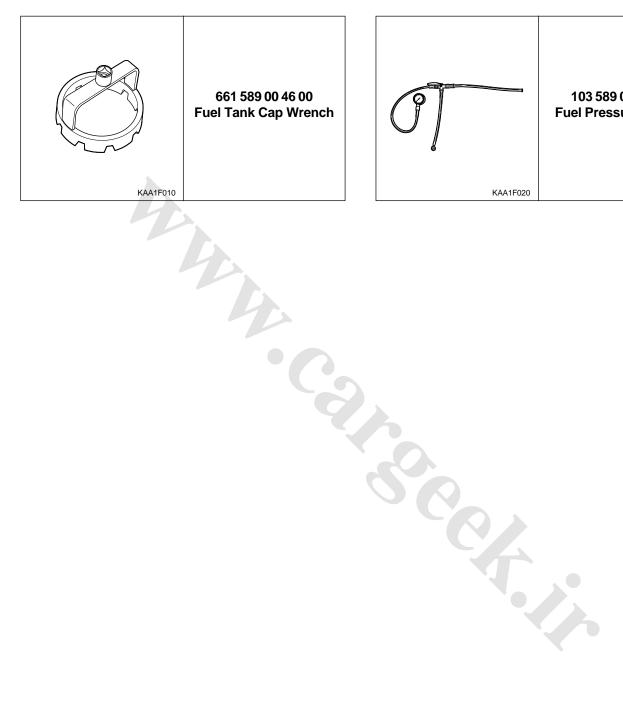
This type of fuel can reduce vehicle performance and damage components of the fuel system.

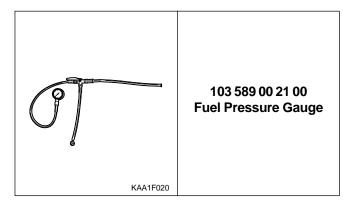
Caution: Use of methanol may damage the fuel system.

Vehicle Fueling from Drums or Storage Containers

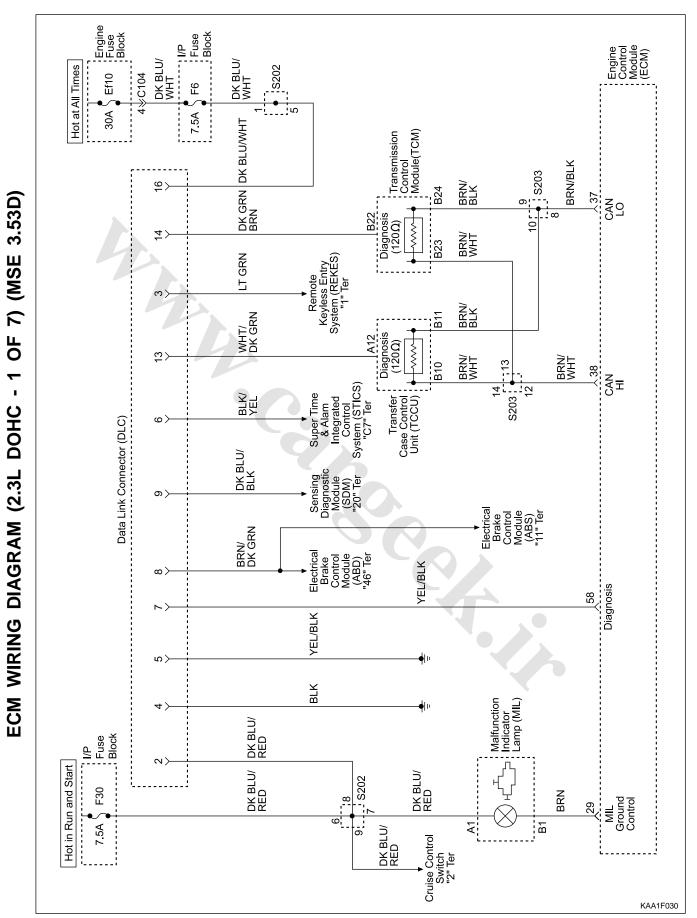
For safety reasons (particularly when using noncommercial fueling systems) fuel containers, pumps and hoses must be properly earthed.

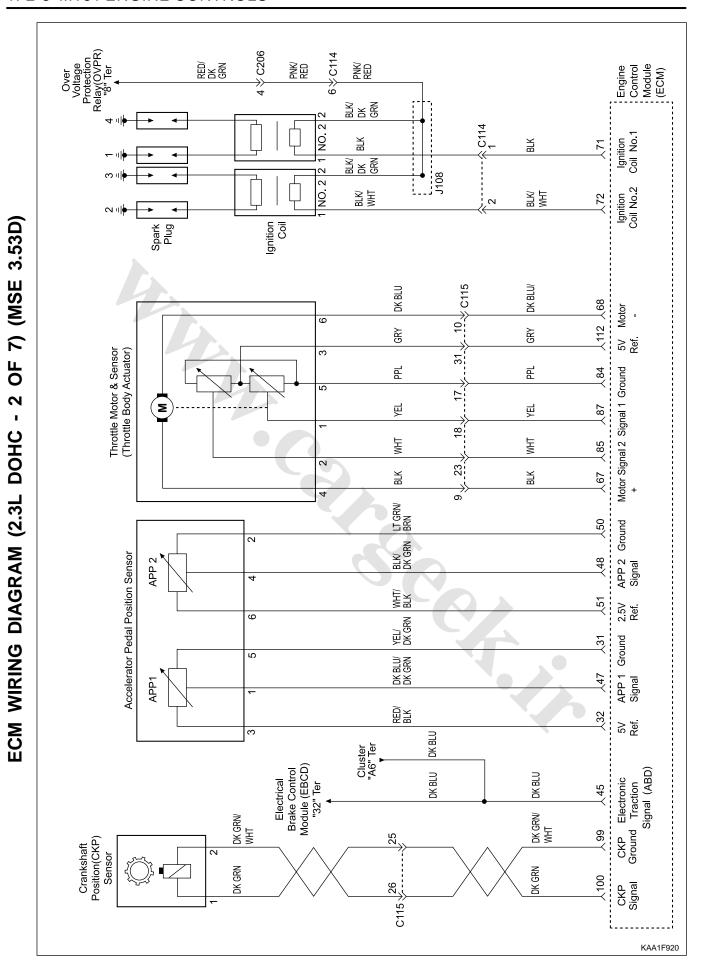
Static electricity build up can occur under certain atmospheric and fuel flow conditions if unearthed hoses, particularly plastic, are fitted to the fuel-dispensing pump.

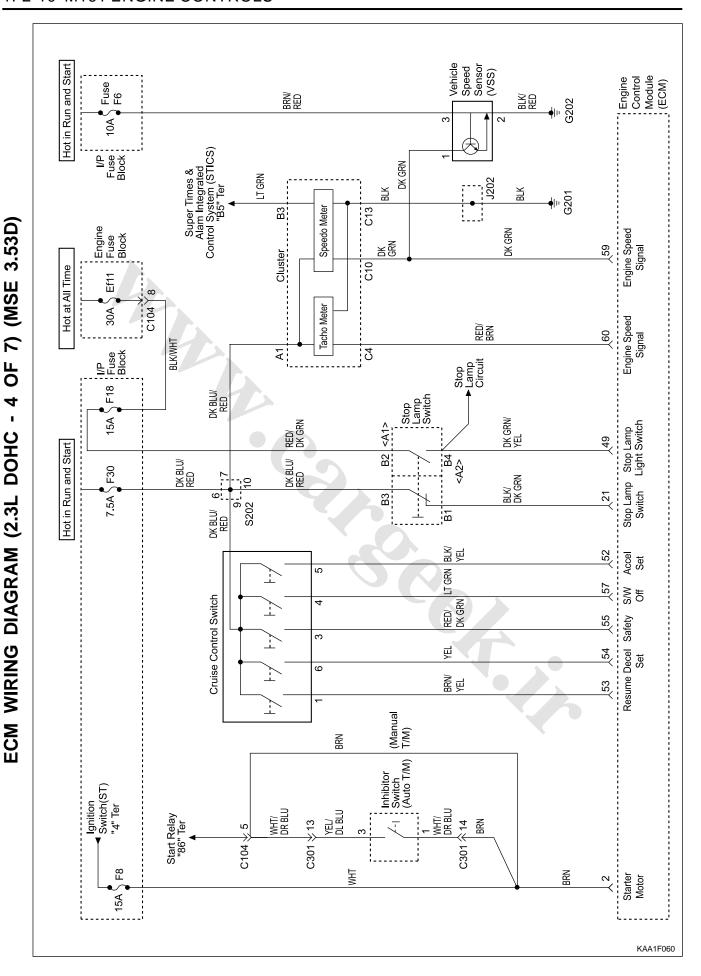

It is therefore recommended that earthed pumps with integrally earthed hoses be used, and that storage containers be properly earthed during all noncommercial fueling operations.

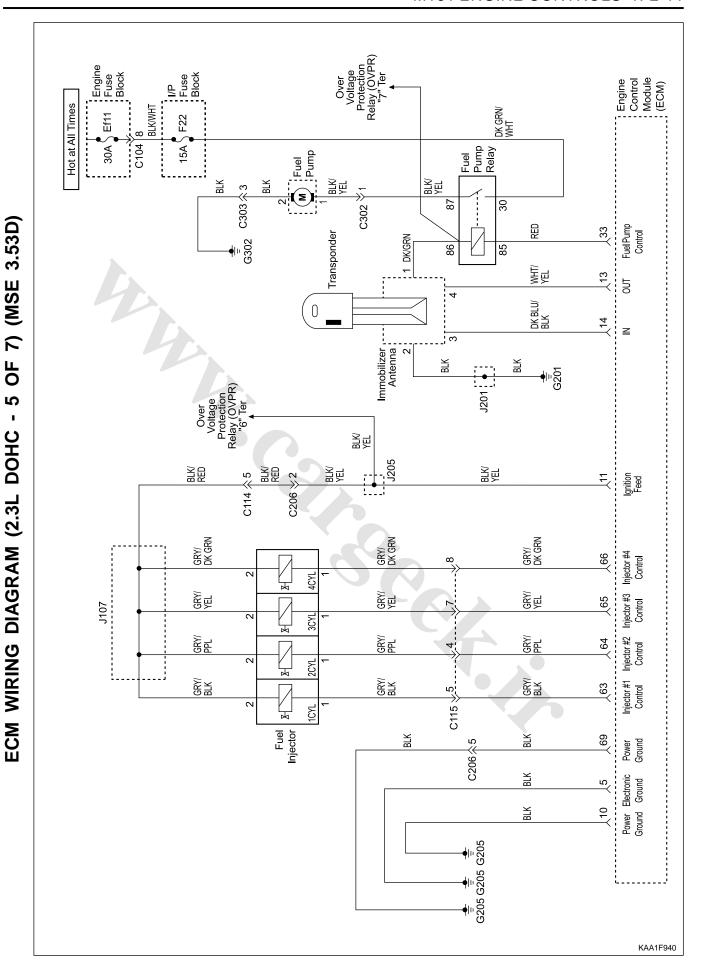

TEMPERATURE VS RESISTANCE

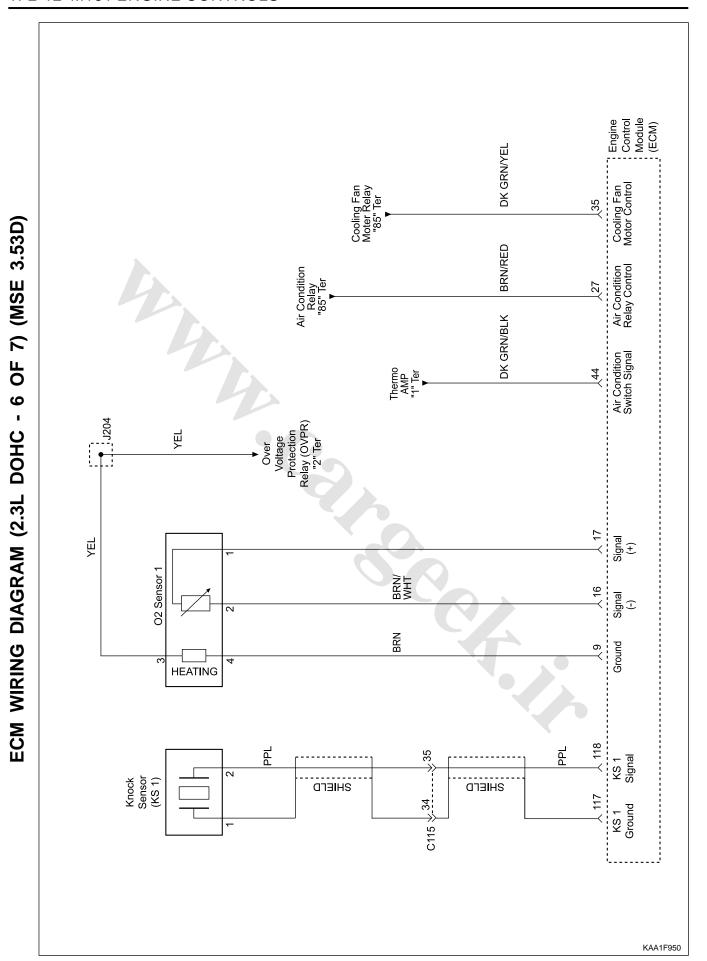
		ECT sensor	IAT sensor
°C	°F	ohm	ns (Ω)
	Temperature vs Resistan	ce Values (Approximate)	,
130	266	88	102
120	248	111.6	127
110	230	143	159
100	212	202	202
90	194	261	261
80	176	340	340
70	158	452	452
60	140	609	609
50	122	835	835
40	113	1166	1166
30	86	1662 1662	
20	68	2420 2420	
10	50	3604	3604
0	32	5499	5499
-10	14	8609	8609
-20	-4	13850	13850
-30	-22	22960	22960
-40	-40 39260 39260		

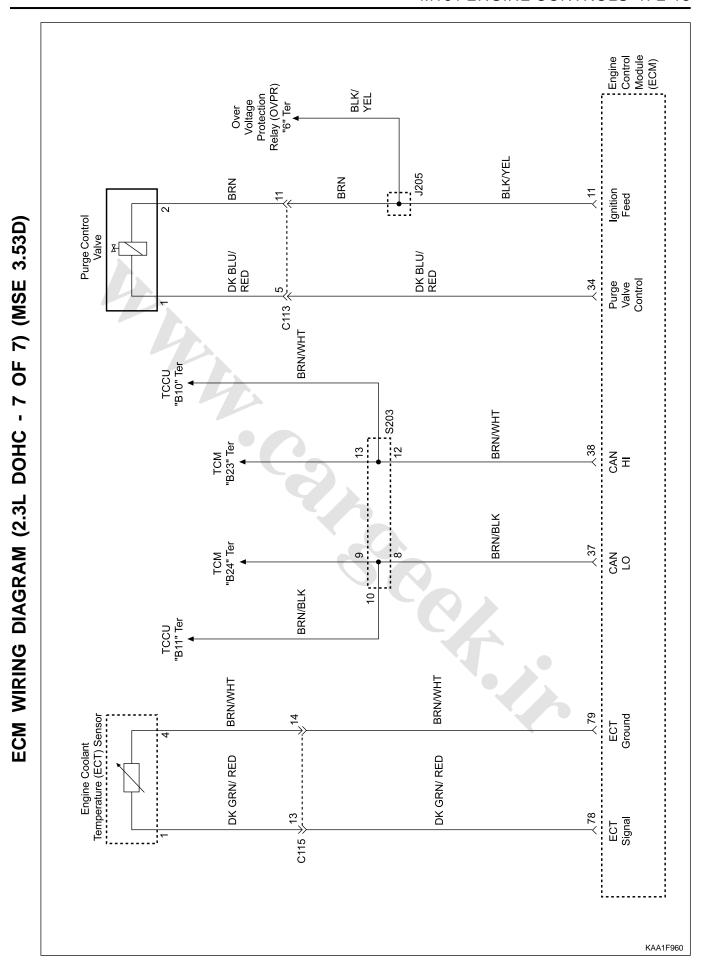

SPECIAL TOOLS AND EQUIPMENT


SPECIAL TOOLS TABLE


SCHEMATIC AND ROUTING DIAGRAMS






9 Over Voltage Protertion Relay(OVPR) 15A Fuse BLK Engine Control Module (ECM) Hot in Run and Start ‡ G302 βΞ DK BLU RED F24 က Ef28 10A DK GRN/ BLK ₹ C104 Hot at All Times Ef25 15A DK GRN/ WHT 茰 -----C102 ₹ Engine Fuse 20A DK GRN/ BLK 9 YEL/ DK GRN YEL/ DK GRN 垣 C114 4 C204 & 1 J204 Camshaft Actuator RED/ DK GRN RED/ DK GRN Camshaft Actuator Control BRN GRY 73 J106 BRN/ DK GRN BRN/ DK GRN Camshaft Position(CMP) Sensor 29 \$ 27 CMP Ground 종 YEL SRY RED/ DK BLU CMP Signal BRN MAP MAP Signal Ground BRN 28 Manifold Absolute Pressure(MAP) Sensor YEL/ DK GRN YEL/ DK GRN 16 108 C115 \$\frac{4}{39}_-.. BRN/ YEL BRN YEL 5V Ref KAA1F930

ECM WIRING DIAGRAM (2.3L DOHC - 3 OF 7) (MSE 3. 53D)

DIAGNOSIS

FAILURE CODE DIAGNOSIS

CLEARING FAILURE CODES

Notice: To prevent Engine Control Module (ECM) damage, the key must be OFF when disconnecting or reconnecting the power to the ECM (for example battery cable, ECM pigtail connector, ECM fuse, jumper cables, etc.)

Parameters listed in the table may not be exactly the same as your reading due to the type of instrument or other factors. If a failure code is displayed during the "TROUBLE CODE" in scan tool check mode, check the circuit for the code listed in the table below. For details of each code, turn to the page referred to under the "See Page" for the respective "Failure Code" in the below table.

Failure codes should be cleared after repairs have been completed.

FAILURE CODES TABLE

Failure code	See Page	Description	
00	1F2-66	Engine coolant temperature sensor low voltage	
01	1F2-66	Engine coolant temperature sensor high voltage	
02	1F2-66	Engine coolant temperature sensor plausibility	
03	1F2-62	Intake air temperature sensor low voltage	
04	1F2-52	Intake air temperature sensor high voltage	
05	1F2-62	Intake air temperature sensor plausibility	
06	1F2-66	Engine coolant temperature insufficient for closed loop fuel control	
08	1F2-38	System voltage too low	
09	1F2-62	Mass air flow sensor plausibility	
10	1F2-62	Mass air flow sensor low voltage	
11	1F2-62	Mass air flow sensor high voltage	
17	1F2-23	Crankshaft position sensor signal failure (no engine revolution signal)	
18	1F2-23	Crankshaft position sensor signal failure (rpm > max. value)	
19	1F2-27	Camshaft position senosr signal : No. 1 cylinder recognition failure	
20	1F2-23	Crankshaft position sensor signal failure (gap recognition failure)	
21	1F2-90	Transmission coding failure	
23	1F2-88	CAN communication failure : ASR/MSR	
24	1F2-88	CAN communication failure : ABS	
25	1F2-94	Communication with transponder missing	
26	1F2-88	CAN communication failure : TCU (A/T only)	
29	1F2-89	CAN communication failure : ID 200h not plausible	
30	1F2-89	CAN communication failure : ID 208h not plausible	
31	1F2-89	CAN communication failure : communication initialization failure	
32	1F2-77	Engine rpm output circuit short circuit to battery	
33	1F2-77	Engine rpm output circuit short circuit to ground or open	
34	1F2-43	Fuel pump relay short circuit to battery	
35	1F2-43	Fuel pump relay short circuit to ground or open	

FAILURE CODES TABLE (Cont'd)

Failure code	See Page	Description
40	1F2-51	Purge control valve short circuit to battery
41	1F2-51	Purge control valve short circuit to ground or open
44	1F2-72	Cooling fan (HI) relay short circuit to power
45	1F2-72	Cooling fan (HI) relay short circuit to ground or open
54	1F2-51	Purge control circuit malfunction
56	1F2-33	No. 1 knock sensor signal failure
58	1F2-27	Camshaft position sensor signal : No. 1 cylinder synchronization failure
59	1F2-89	CAN communication failure : MSR data transmission not plausible
60	1F2-89	CAN communication failure : ASR data transmission not plausible
64	1F2-21	No ignition voltage output (No. 1 ignition coil)
65	1F2-21	No ignition voltage output (No. 2 ignition coil)
67	1F2-23	Crankshaft position sensor adaptation failure
68	1F2-35	Random/Multiple Misfire
71	1F2-39	Starter signal recognition failure
72	1F2-47	No. 1 injector short circuit to battery
73	1F2-47	No. 1 injector short circuit to ground or open
74	1F2-47	No. 2 injector short circuit to battery
75	1F2-47	No. 2 injector short circuit to ground or open
76	1F2-47	No. 3 injector short circuit to battery
77	1F2-48	No. 3 injector short circuit to ground or open
78	1F2-48	No. 4 injector short circuit to battery
79	1F2-48	No. 4 injector short circuit to ground or open
80	1F2-82	Oxygen sensor high voltage
81	1F2-83	Bank 1 system short term fuel trim adaptation below lean threshold
82	1F2-82	Oxygen sensor no activity detected
83	1F2-82	Oxygen sensor not lean after overrun fuel shut-off
84	1F2-82	Oxygen sensor slow response
85	1F2-82	Oxygen sensor heater failure
86	1F2-82	Oxygen sensor heater short circuit to battery
87	1F2-82	Oxygen sensor heater short circuit to ground or open
89	1F2-82	Oxygen sensor low voltage
93	1F2-83	Bank 1 system short term fuel trim adaptation above rich threshold
96	1F2-83	Bank 1 system short term fuel trim at rich stop
97	1F2-83	Bank 1 system short term fuel trim at lean stop
98	1F2-83	Bank 1 system idle adaptation failure (above rich threshold)
99	1F2-83	Bank 1 system idle adaptation failure (below lean threshold)
100	1F2-83	Bank 1 system learning control failure (rich, low load)
101	1F2-83	Bank 1 system learning control failure (lean, low load)
102	1F2-83	Bank 1 system learning control failure (rich, high load)

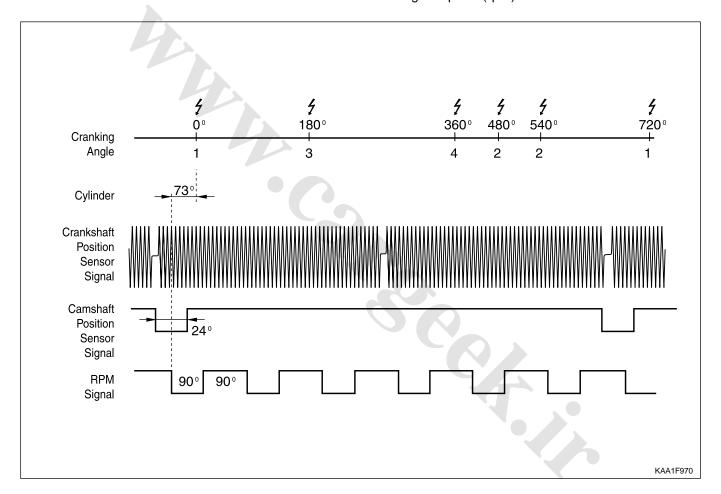
FAILURE CODES TABLE (Cont'd)

Failure code	See Page	Description	
103	1F2-83	Bank 1 system learning control failure (lean, high load)	
104	1F2-57	Throttle position sensor 1 low voltage	
105	1F2-57	Throttle position sensor 1 high voltage	
108	1F2-57	Throttle position sensor 2 low voltage	
109	1F2-57	Throttle position sensor 2 high voltage	
110	1F2-92	Throttle actuator learning data fault	
116	1F2-57	Throttle actuator learning control failure	
117	1F2-92	Exceed fuel-cut safety time	
119	1F2-57	Throttle valve return spring failure	
120	1F2-92	Cruise control interruption memory failure	
121	1F2-57	Throttle actuator failure	
122	1F2-69	Accelerator pedal position sensor signal failure	
123	1F2-57	Different Mass air flow sensor signal with throttle position sensor	
125	1F2-57	Both throttle position sensors failure	
126	1F2-58	Throttle position sensor 1 not plausible with throttle position sensor 2	
127	1F2-58	High permanent throttle signal	
129	1F2-74	Cruise control "OFF" due to message counter failure	
130	1F2-74	Vehicle speed signal failure	
131	1F2-74	Vehicle speed signal failure	
132	1F2-74	Cruise control lever failure	
133	1F2-74	Cruise control acceleration failure	
134	1F2-74	Cruise control deceleration failure	
135	1F2-76	Stop lamp switch failure	
136	1F2-90	ECU failure (RAM)	
137	1F2-90	ECU failure (EPROM)	
138	1F2-92	Call monitoring	
139	1F2-92	Servo motor control output interruption memory failure	
140	1F2-92	Servo motor open/short	
141	1F2-94	Unprogramed ECU with immobilizer	
142	1F2-90	Uncoded/unprogramed ECU	
143	1F2-90	ECU failure (EEPROM/Flash-EPROM checksum failure)	
144	1F2-90	ECU failure (coding ID checksum failure)	
145	1F2-90	ECU failure (coding checksum failure)	
146	1F2-90	ECU failure (programing checksum failure)	
150	1F2-75	TCS input signal short circuit to battery	
151	1F2-75	TCS input signal short circuit to ground or open	
160	1F2-69	Accelerator pedal position sensor 1 low voltage	
161	1F2-69	Accelerator pedal position sensor 1 high voltage	
162	1F2-69	Accelerator pedal position sensor 2 low voltage	
163	1F2-69	Accelerator pedal position sensor 2 high voltage	
164	1F2-69	Accelerator pedal position sensor 1 not plausible with pedal position sensor 2	

FAILURE CODES TABLE (Cont'd)

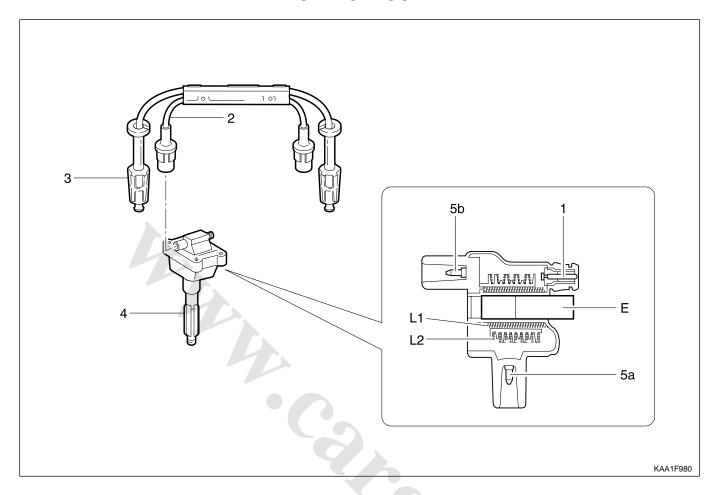
Failure code	See Page	Description	
167	1F2-69	Both setpoint accelerator pedal position sensor defective	
185	1F2-58	Mass air flow sensor and throttle position sensor failure	
186	1F2-92	ECU failure (incompatible CPU)	
187	1F2-92	ECU failure (CPUs communication failure)	
188	1F2-92	ECU failure (CPU 2 configuration failure)	
189	1F2-92	ECU failure (CPU 2 fault)	
190	1F2-92	ECU failure (CPU run time failure between CPUs)	
226	1F2-31	Camshaft actuator short circuit to battery	
227	1F2-31	Camshaft actuator short circuit to ground or open	
228	1F2-73	A/C compressor relay short circuit to battery	
229	1F2-73	VC compressor relay short circuit to ground or open	
231	1F2-92	CU failure (CPU 2 cruise control message counter failure)	
232	1F2-92	Over decceleration limit (CPU 2)	
233	1F2-92	Over acceleration limit (CPU 2)	
234	1F2-92	Cruise control lever dual operation (CPU 2)	
235	1F2-92	Cruise control lever safety terminal failure (CPU 2)	
236	1F2-92	Unusual pedal position variation (CPU 2)	
237	1F2-92	Unusual throttle position variation (CPU 2)	
238	1F2-92	Unusual throttle controller monitor data comparison fault (CPU 2)	
239	1F2-83	Unusual accelerator pedal position sensor comparison fault (CPU 2)	
240	1F2-93	Throttle potentiometer comparision fault (CPU 2)	
241	1F2-93	Unusual CPU communication (CPU 2)	
242	1F2-93	Unusual CPU configuration (CPU 2)	
243	1F2-93	A/D converter failure (CPU 2)	
244	1F2-93	Accelerator pedal position sensor setpoint fault between CPU 1 and CPU 2	
245	1F2-93	Position controller setpoint fault between CPU 1 and CPU 2	
246	1F2-93	MSR setpoint fault between CPU 1 and CPU 2	
247	1F2-93	Idle control setpoint fault between CPU 1 and CPU 2	
248	1F2-93	A/D converteroverflow (CPU 2)	
249	1F2-93	ROM fault (CPU 2)	
250	1F2-93	RAM fault (CPU 2)	
251	1F2-93	Cycle monitor fault (CPU 2)	

IGNITION SYSTEM


This ignition system does not use a conventional distributor and coil. It uses a crankshaft position sensor input to the Engine Control Module (ECM). The ECM then determines Electronic Spark Timing (EST) and triggers the electronic ignition system ignition coil.

This type of distributorless ignition system uses a "waste spark" method of spark distribution. Each cylinder is paired with the cylinder that is opposite it (2-3 or 1-4). The spark occurs simultaneously in the cylinder coming up on the compression stroke and in the cylinder coming up on the exhaust stroke. The cylinder on the exhaust stroke requires very little of

the available energy to fire the spark plug. The remaining energy is available to the spark plug in the cylinder on the compression stroke.

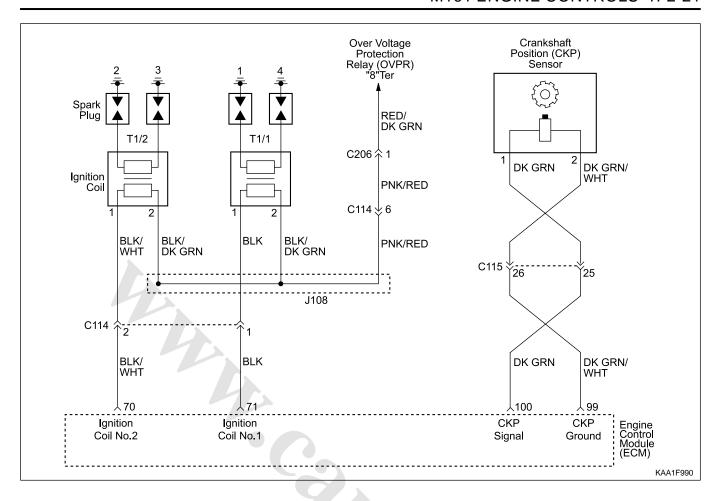

These systems use the EST signal from the ECM to control the EST. The ECM uses the following information:

- Engine load (mass air flow sensor).
- Engine temperature.
- Intake air temperature.
- · Crankshaft position.
- Engine speed (rpm).

IGNITION COIL

- 1 Control Cable Connection
- 2 Ignition Cable
- 3 Spark Plug Connector
- 4 Coupling Plug

- 5a, 5b Secondary Voltage Connection
 - E Iron Core
 - L1 Secondary Ignition Coil
 - L2 Primary Ignition Coil


The Electronic Ignition (EI) system ignition coil is located on the cylinder head cover. The double ended coils receive the signal for the Engine Control Module (ECM) which controls the spark advance.

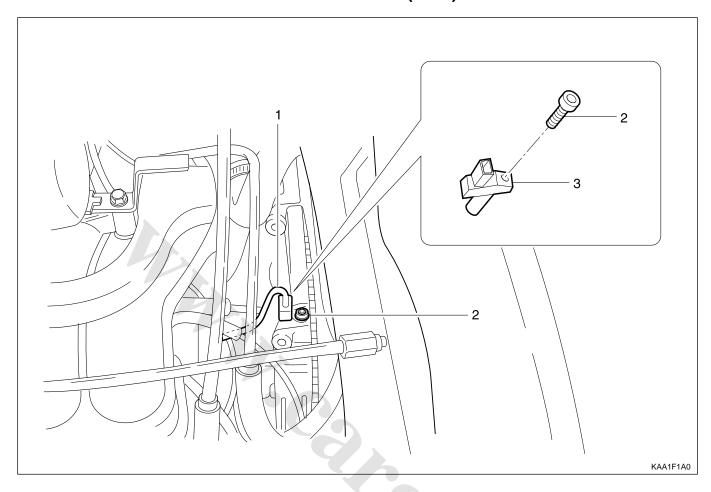
Each EI system ignition coil provides the high voltage to two spark plugs simultaneously;

T1/1: cylinder 1 and 4

T1/2: cylinder 2 and 3

The EI system ignition coil is not serviceable and must be replaced as an assembly.

Failure Code	Description	Trouble Area	Maintenance Hint
	No ignition voltage		 Inspection the ECM pin 71 and 72 about short circuit or open with bad contact
64	output (No. 1 ignition coil)		 Inspection the power source to ignition coil
		Malfunction of ignition circuit Primary current values or secondary short circuit	 Inspection the ignition coil, high tension cords etc.
65	No ignition voltage output (No. 2 ignition coil)		 Inspection the spark plug (wet, cracks, wear, improper gap, burned electrodes, heavy deposit)
			Inspection the ECM

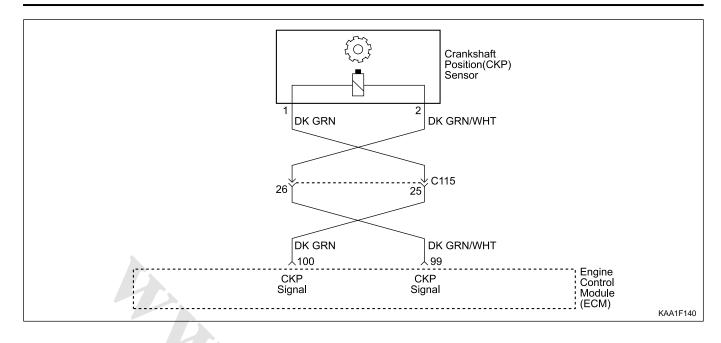

Circuit Description

The Electronic Ignition (EI) system uses a waste spark method of spark distribution. The Crankshaft Position (CKP) sensor sends reference pulses to the ECM. The ECM then triggers the EI system ignition coils. Once the ECM triggers the EI system ignition coils both of the connected spark plugs fire at the same time. One cylinder is on its compression stroke at the same time that the other is on the exhaust stroke, resulting in lower energy needed to fire the spark plug in the cylinder on its exhaust stroke.

This leaves the remainder of the high voltage to be used to fire the spark plug in the cylinder on its compression stroke.

Since the CKP sensor is in a fixed position, timing adjustments are not possible or needed.

CRANKSHAFT POSITION (CKP) SENSOR


- 1 Crankshaft Position Sensor Connector
- 2 Bolt

3 Crankshaft Position Sensor

This Electronic Ignition (EI) system uses inductive or pick up type magnetic Crankshaft Position (CKP) sensor. The CKP sensor is located in the opposite side of the crankshaft pulley and triggers the pick-up wheel teeth which is equipped 60-2 teeth with agap of 2 teeth at 360 degree spacing. This sensor protrudes through its mount to within 1.1 ± 0.14 mm.

The output of the sensor is a sinusoidal signal. Each tooth of the pick-up 60-2 wheel generates a positive half wave.

The Engine Control Module (ECM) uses this sensor signal to generate timed ignition and injection pulses that it sends to the ignition coils and to the fuel injectors.

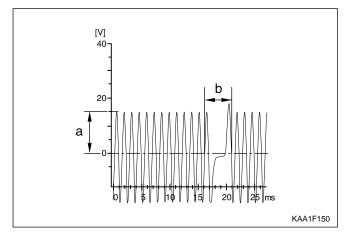
Failure Code	Description	Trouble Area	Maintenance Hint
17	Crankshaft position sensor signal failure (no engine revolution signal)	Even through cam position recognition is normal, no crankshaft position signal recognition	Monitoring the actual rpm through or scan tool
18	Crankshaft position sensor signal failure (rpm > max. value)	When more than applicable revolution values or implausible to 60-2 teeth.	 Inspection the ECM pin 100, 99 about short circuit with bad contact Inspection the CKP sensor
20	Crankshaft position sensor signal failure (gap recognition failure)	When implausible recognition of cam and crank angle signal or intermittent sensing the signal or error count of undetected gap.	 Inspection the air gap between sensor and drive plate Inspection the drive plate (teeth condition)
67	Crankshaft position sensor adaptation failure	When faulty crank angle sensor adaption	Inspection the ECM

Circuit Description

The 58X reference signal is produced by the CKP sensor. During one crankshaft revolution, 58 crankshaft pulses will be produced. The ECM uses the 58X reference signal to calculate engine rpm and CKP. The ECM constantly monitors the number of pulses on the 58X reference circuit and compares them to the number of Camshaft Position (CMP) signal pulses being received. If the ECM receives and incorrect number of pulses on the 58X reference circuit, this failure code will set.

Crankshaft Position Sensor Resistance Inspection

- 1. Disconnect the coupling "E" of ECM while the ignition switch is in "OFF" position.
- 2. Measure the resistance between the coupling terminal pin No. 99 and No. 100 using a multimeter.


Specified Value	1,050 ~ 1,400 Ω

Notice: Measure the insulator resistance of the CKP sensor if out of the specified value.

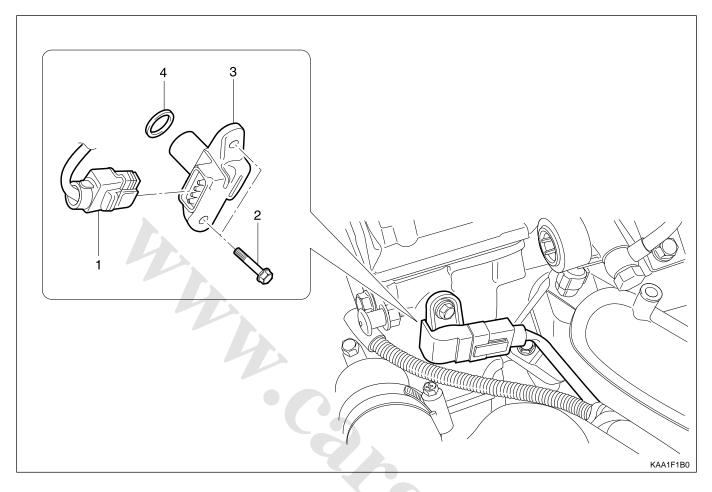
Crankshaft Position Sensor Output Wave Inspection

1. Measure the output wave between the ECM terminals No. 99 and No. 100 using the scan tool or the oscilloscope while engine cranking (start motor activated).

Notice: Check the segment or crankshaft position sensor and air gap if cannot get the output wave as shown in the figure.

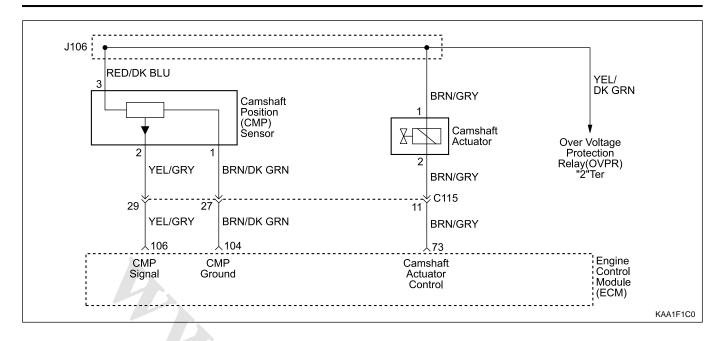
- a Voltage
- b Identifying the No. 1-2 Missing Teeth

Crankshaft Position Sensor Insulator Resistance Inspection


- 1. Disconnect the coupling from ECM while the ignition switch is in "OFF" position.
- 2. Measure the resistance between the coupling terminal pin No. 100 and No. 69 using a multimeter.

Specified Value	>20 kΩ
-----------------	--------

Notice: Measure the check and ground terminal of the CKP sensor if out of the specified value.


CAMSHAFT POSITION (CMP) SENSOR

- 1 Camshaft Position Sensor Connector
- 2 Bolt

- 3 Camshaft Position Sensor
- 4 O-Ring

The Camshaft Position (CMP) sensor sends a CMP signal to the Engine Control Module (ECM). The ECM uses this signal as a "synchronized pulse" to trigger the injectors in the proper sequence. The ECM uses the CMP signal to indicate the position of the #1 piston during its power stroke. This allows the ECM to calculate true sequential fuel injection mode of operation.

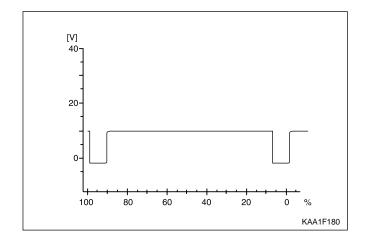
Failure Code	Description	Trouble Area	Maintenance Hint
19	Camshaft position sensor signal : No. 1 cylinder recognition failure	When no cam recognition signal during TN 24 counts more. (maintain the constant low or high level)	 Inspection the source voltage of CMP sensor Inspection the ECM pin 106, 104 about short circuit or open with bad contact
58	Camshaft position sensor signal : No. 1 cylinder synchronization failure	When synchronization fault of cylinder 1 (TDC recognition)	 Inspection the CMP sensor Inspection the damage of sensor or sprocket Inspection the ECM

Circuit Description

The CMP sensor sends a cam position signal to the ECM. If the cam position signal is lost while the engine is running, the fuel injection system shifts to a calculated sequential fuel injection mode based on the last fuel injection pulse, and the engine continuous to run.

Camshaft Position Sensor Signal Voltage Inspection

1. Measure the voltage between the ECM terminal No. 11 and No. 106 while the engine speed is at idle.


Specified Value 1.2 ~ 1.7 v

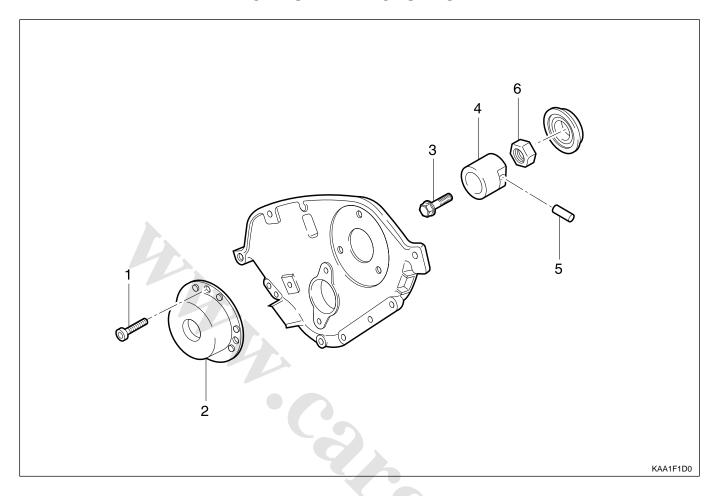
Notice: The signal voltage will be changed in the range of $1.2 \sim 1.7 \text{ v}$.

Camshaft Position Sensor Output Wave Inspection

1. Measure the output wave between the ECM terminals No. 104 and No. 106 using the scan tool or the oscilloscope while engine speed is at idle.

Notice: Replace the CAM sensor if cannot get the output wave as shown in the figure.

Camshaft Position Sensor Power Supply Inspection


- 1. Disconnect the CMP sensor Connector.
- 2. Measure the resistance between the No. 1 and No. 3 pin of the CMP sensor connector while the ignition switch is in "ON" position.

Specified Value	11 ~ 14 v

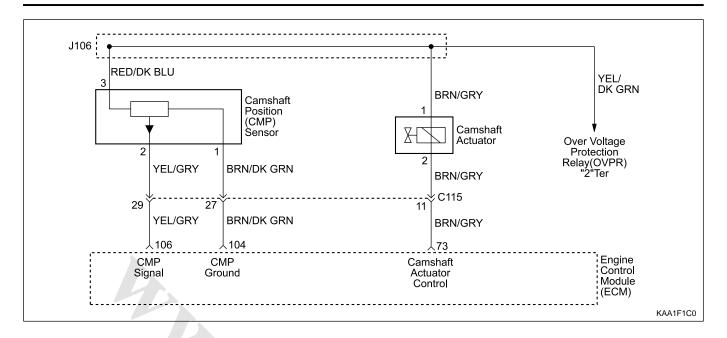
Notice: If the measured value is not within the specified value, check the cable.

CAMSHAFT ACTUATOR

- 1 Bolt
- 2 Camshaft Actuator
- 3 Bolt

- 4 Armature
- 5 Roll Pin
- 6 Nut

When the engine is running, the camshaft actuator rotates the intake camshaft hydraulically and mechanically relative to the camshaft sprocket by 20° crank angle to the "advanced" position and back to the "retard" position.


The camshaft actuator is actuated electro-mechanically by the Engine Control Module (ECM).

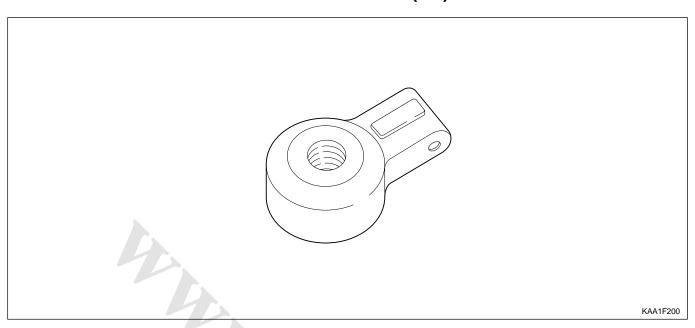
The positioning time of apporx. 1 second is dependent on the engine oil pressure at the camshaft actuator and on the oil viscosity and oil temperature, respectively.

The camshaft indicator on the camshaft sprocket provides the camshaft rotational speed to the position sensor as an input parameter for the engine ignition control unit.

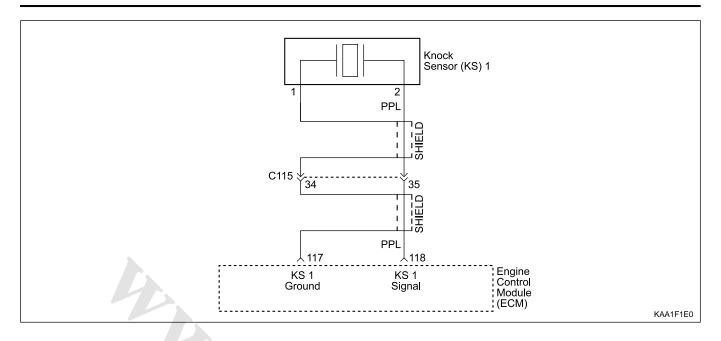
Operation Condition of Camshaft Actuator

Engine RPM	Camshaft Position	Effect
Engine stop	Retard	-
0 ~ 1,740 rpm	Retard	Idle speed is improved Blow-by gas is decreased Valve overlap is decreased
1,740 ~ 3,540 rpm	Advanced	Torque is increased Fuel loss is decreased NOx is decreased
Above 3,540 rpm	Retard	Engine overrun is prohibited

Failure Code	Description	Trouble Area	Maintenance Hint
226	Camshaft actuator short circuit to battery	When malfunction of cam phasing control	Monitoring the actual operational status through scan tool
220			Inspection the ECM pin 73 about short circuit or open
	Camshaft actuator short circuit to ground or	9	Inspection the power source short circuit or open to cam actuator
227	open		Inspection the magnet and hardware
			Inspection the ECM


Camshaft Actuator Current Consumption Inspection

- 1. Run the engine to reach the coolant temperature above 70 °C.
- 2. Increase the engine rpm up to 2,000 rpm
- 3. Measure the current between the No. 1 and No. 2 pin of the camshaft actuator connector.


Specified Value	1 ~ 1.5 A
opodinoa valao	1 1.0 / (

Notice: If the measured value is not within the specified value, check the cable.

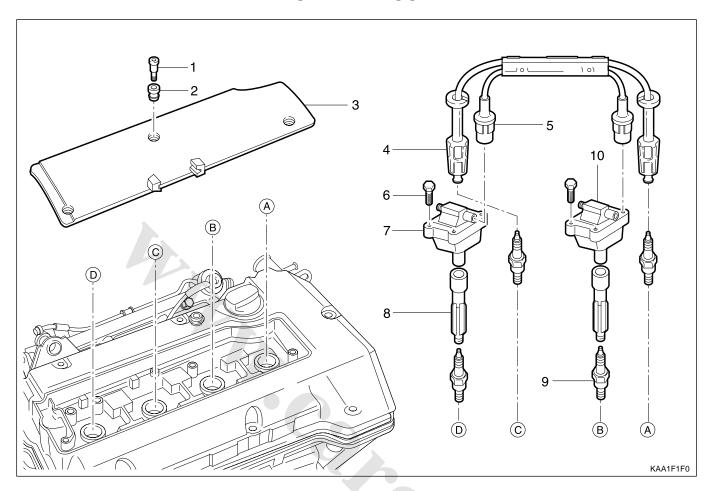
KNOCK SENSOR (KS)

The Knock Sensor (KS) detects abnormal knocking in the engine. The two KS are mounted in the engine block near the cylinders. The sensors produce an output voltage which increases with the severity of the knock. This signal is sent to the Engine Control Module (ECM) via a shielded cable. The ECM then adjusts the ignition timing to reduce the spark knock.

Failure Code	Description	Trouble Area	Maintenance Hint
56	No. 1 knock sensor signal failure	When recognition in more than control gain threshold at normal operational condition of other system during over 75 and 3,000 rpm running area (cylinder 1, 2, 3, 4)	 Inspection the ECM pin 118, 117 about short circuit or open with bad contact Inspection the KS 1 malfunction Inspection the ECM

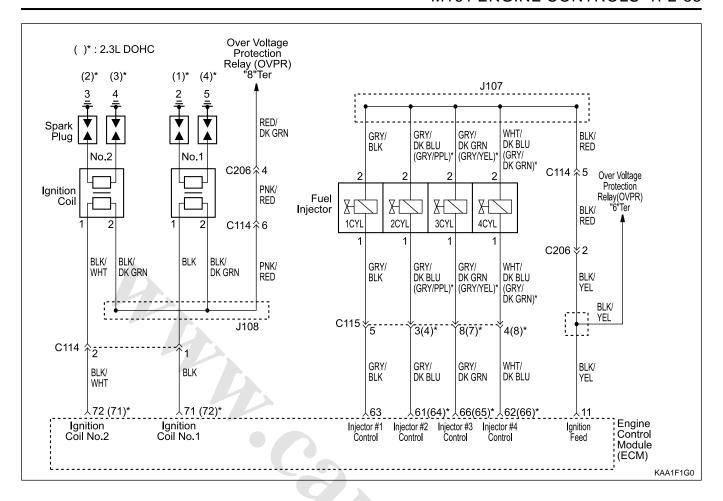
Circuit Description

The KS system is used to detect engine detonation, allowing the ECM to retard the ignition control spark timing based on the KS signal being received. The KS signal's amplitude and frequency depend upon the amount of knock being experienced. The ECM monitors the KS signal and can diagnose the KS sensor and circuitry.


Knock Sensor Resistance Inspection

- 1. Disconnect the coupling from ECM while the ignition switch is in "OFF" position.
- 2. Measure the resistance between the coupling terminal pin No. 118 and No. 117 using a multimeter.

Specified Value >10 MΩ	Specified Value	>10 MΩ
------------------------	-----------------	--------


Notice: Replace the KS if the measured values is out of the specified values. Check the connector and wire connection between ECM and the KS if the measured values are normal.

SPARK PLUG

- 1 Screw
- 2 Adaptor
- 3 Ignition Coil Cable Cover
- 4 Spark Plug Connector
- 5 Ignition Coil Connector

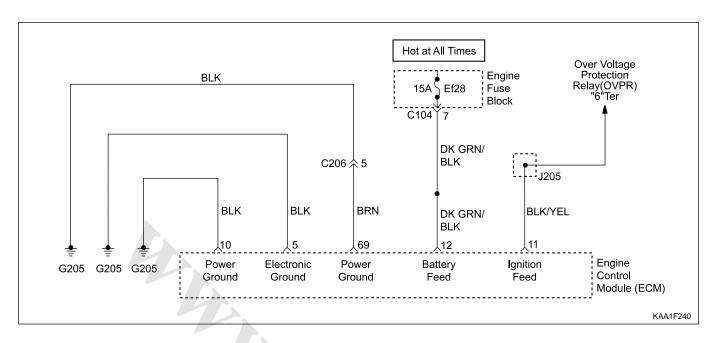
- 6 Bolts
- 7 Ignition Coil (T 1/1)
- 8 Coupling Plug
- 9 Spark Plug
- 10 Ignition Coil (T 1/2)

Failure Code	Description	Trouble Area	Maintenance Hint
68	Random / Multiple Misfire	When detection misfire of multiple cylinder for source of over the emission threshold or catalyst damage	 Inspection the ignition system Inspection the injection system Inspection the fuel pressure Inspection the compression pressure Inspection the valve timing or clearance Inspection the air flow sensor Inspection the crankshaft position sensor and air gap Inspection the engine wiring system Inspection the Engine Control Module (ECM)

Circuit Description

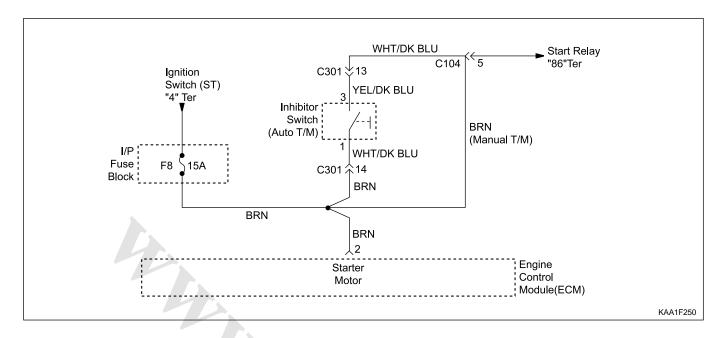
The ECM monitors the crankshaft and camshaft positions to detect if the engine is misfiring. The ECM looks for a quick drop in crankshaft speed. Misfire multiple cylinder is monitored by engine roughness measuring. The actual roughness value is compared with the actual (emission and catalyst damage) threshold.

Spark Plug Cable Resistance Inspection


- 1. Turn the ignition switch "OFF" position.
- 2. Disconnect the spark plug cables Refer to Section 1E1, Engine electrical.
- 3. Measure the spark plug resistance using a multimeter.

Specified Value 1.

Notice: Replace the spark plug cable if the measured values is out of the specified values.



SYSTEM VOLTAGE

Failure Code	Description	Trouble Area	Maintenance Hint
08	System voltage too low	Malfunction in recognition of system source voltage. Less than minimum 8 volts in 2,000 rpm below, or less than 10 volts in 2,000 rpm above.	 Monitoring the actual battery voltages through the scan tool Inspection the Engine Control Module (ECM) pin 12, 11, 10, 5 about short circuit or open with bad contact Inspection the over voltage protection relay Inspection the battery Inspection ECM

IGNITION SWITCH

Failure Code	Description	Trouble Area	Maintenance Hint
71	Starter signal recognition failure	When not detection of starter signal	 Inspection the Engine Control Module (ECM) pin 2 circuit short or open with bad contact
			Inspection ECM

FUEL SYSTEM

The function of the fuel metering system is to deliver the correct amount of fuel to the engine under all operating conditions.

The fuel is delivered to the engine by the individual fuel injectors mounted into the intake manifold near each cylinder.

The main fuel control sensors are the Mass Air Flow (MAF) sensor and the oxygen (O2) sensors.

The MAF sensor monitors the mass flow of the air being drawn into the engine. An electrically heated element is mounted in the intake air stream, where it is cooled by the flow of incoming air. Engine Control Module (ECM) modulates the flow of heating current to maintain the temperature differential between the heated film and the intake air at a constant level. The amount of heating current required to maintain the temperature thus provides an index for the mass air flow. This concept automatically compensates for variations in air density, as this is one of the factors that determines the amount of warmth that the surrounding air absorbs from the heated element. MAF sensor is located between the air filter and the throttle valve.

Under high fuel demands, the MAF sensor reads a high mass flow condition, such as wide open throttle. The ECM uses this information to enrich the mixture, thus increasing the fuel injector on-time, to provide the correct amount of fuel. When decelerating, the mass flow decreases. This mass flow change is sensed by the MAF sensor and read by the ECM, which then decreases the fuel injector on-time due to the low fuel demand conditions.

The O2 sensors are located in the exhaust pipe before catalytic converter. The O2 sensors indicate to the ECM the amount of oxygen in the exhaust gas, and the ECM changes the air/fuel ratio to the engine by controlling the fuel injectors. The best air/fuel ratio to minimize exhaust emissions is 14.7 to 1, which allows the catalytic converter to operate most efficiently. Because of the constant measuring and adjusting of the air/fuel ratio, the fuel injection system is called a "closed loop" system.

The ECM uses voltage inputs from several sensors to determine how much fuel to provide to the engine. The fuel is delivered under one of several conditions, called "modes".

Starting Mode

When the ignition is turned ON, the ECM turns the fuel pump relay on for 1 second. The fuel pump then builds fuel pressure. The ECM also checks the Engine Coolant Temperature (ECT) sensor and the Throttle Position (TP) sensor and determines the proper air/fuel ratio for starting the engine. This ranges from 1.5 to 1 at -36 °C (-33 °F) coolant temperature to 14.7 to 1 at 94 °C (201 °F) coolant temperature. The ECM controls the amount

of fuel delivered in the starting mode by changing how long the fuel injector is turned on and off. This is done by "pulsing" the fuel injectors for very short times.

Run Mode

The run mode has two conditions called "open loop" and "closed loop".

Open Loop

When the engine is first started and it is above 690 rpm, the system goes into "open loop" operation. In "open loop", the ECM ignores the signal from the HO2S and calculates the air/fuel ratio based on inputs from the ECT sensor and the MAF sensor. The ECM stays in "open loop" until the following conditions are met:

- The O2 has a varying voltage output, showing that it is hot enough to operate properly.
- The ECT sensor is above a specified temperature (22.5 °C).
- A specific amount of time has elapsed after starting the engine.

Closed Loop

The specific values for the above conditions vary with different engines and are stored in the Electronically Erasable Programmable Read-Only Memory (EEPROM). When these conditions are met, the system goes into "closed loop" operation. In "closed loop", the ECM calculates the air/fuel ratio (fuel injector on-time) based on the signals from the O2 sensors. This allows the air/fuel ratio to stay very close to 14.7 to 1.

Acceleration Mode

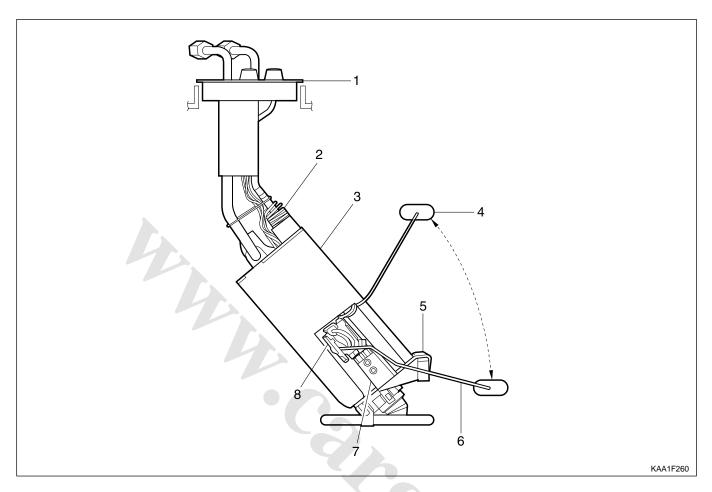
The ECM responds to rapid changes in throttle position and airflow and provides extra fuel.

Deceleration Mode

The ECM responds to changes in throttle position and airflow and reduces the amount of fuel. When deceleration is very fast, the ECM can cut off fuel completely for short periods of time.

Battery Voltage Correction Mode

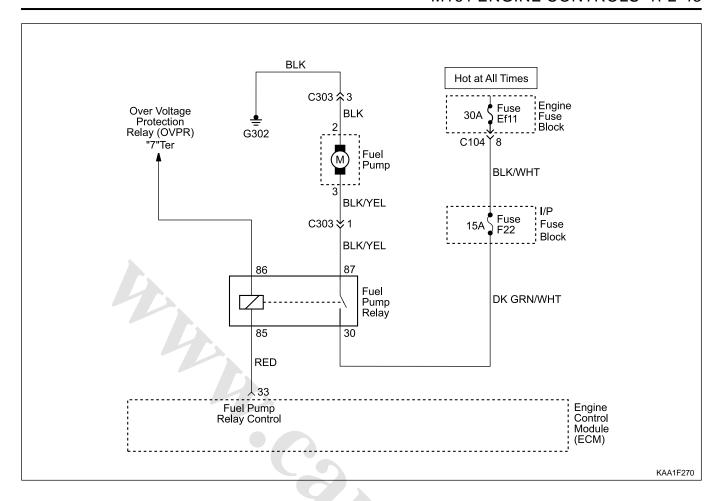
When battery voltage is low, the ECM can compensate for a weak spark delivered by the ignition module by using the following methods:


- Increasing the fuel injector pulse width.
- Increasing the idle speed rpm.
- Increasing the ignition dwell time.

Fuel Cut-Off Mode

No fuel is delivered by the fuel injectors when the ignition is off. This prevents dieseling or engine runon. Also, the fuel is not delivered if there are no reference pulses received from the CKP sensor. This prevents flooding.

FUEL PUMP



- 1 Flange and Harness Assembly
- 2 Spring
- 3 Fuel Pump
- 4 Float

- 5 Thermistor
- 6 Float Arm
- 7 Thermistor Housing
- 8 Resistor Card and Wiper

Requirements for Fuel Pump

Item	Specified Value	Item	Specified Value
System Pressure	3.8 bar	Minimum Delivery at 8V	30 Litre/ Hr
Maximum Pressure	8.5 bar (12 V)	Operating Voltage	8 V
Minimum Pressure	5.0 bar (12 V)	Maximum Allowable Current	7.5 A
Nominal Voltage	12 V	Ambient Temperature	-30 ~ +70° C
Minimum Amount of Fuel Supply	114 Liter/ Hr (12 V, 3.8 bar, -30 ~ +70° C)	Maximum Amount of Fuel Supply	165 Liter/ Hr (12 V, 3.8 bar, -30 ~ +70° C)

Failure Code	Description	Trouble Area	Maintenance Hint
34	Fuel pump relay short circuit to battery	When short circuit to power source	Inspection the Engine Control Module (ECM) pin 33 about short circuit or open
35	Fuel pump relay short circuit to ground or open	When short circuit to ground or open	with bad contactInspection the fuel pump relayInspection the ECM

Circuit Description

When the ignition switch is turned ON, the ECM will activate the pump relay and run the in-tank fuel pump. The fuel pump will operate as long as the engine is cranking or running and the ECM is receiving ignition reference pulses.

If there are no reference pulses, the ECM will shut off the fuel pump within 2 seconds after the ignitions witch is turned ON, engine stopped or engine stalled.

Fuel Pump Relay Inspection

Measure the voltage between the ECM terminal No. 33 and ground.

Ignition Switch : ON	0 V (for 1 ~ 2 sec.)
Cranking	0 V

1F2-44 M161 ENGINE CONTROLS www.CarGeek.ir

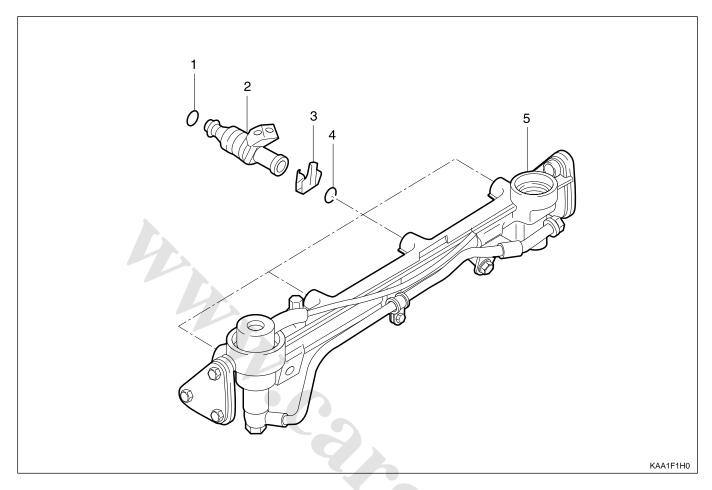
Measure the Fuel Delivery from the Fuel Pump

- 1. Disconnect the return pipe from fuel distributor and insert the appropriate hose into it.
- 2. Place the hose end into the beaker with the minimum capacity of 1 Liter.
- 3. Turn the ignition switch to "ON" position.
- 4. Connect the terminal No. 33 and No. 5 of ECM with a service wire.
- 5. Measure the fuel delivery from the fuel pump.

Specified Value	1 Liter/max. 35 sec.

Notice: Check the fuel filter and fuel line when the fuel delivery is not within specified value.

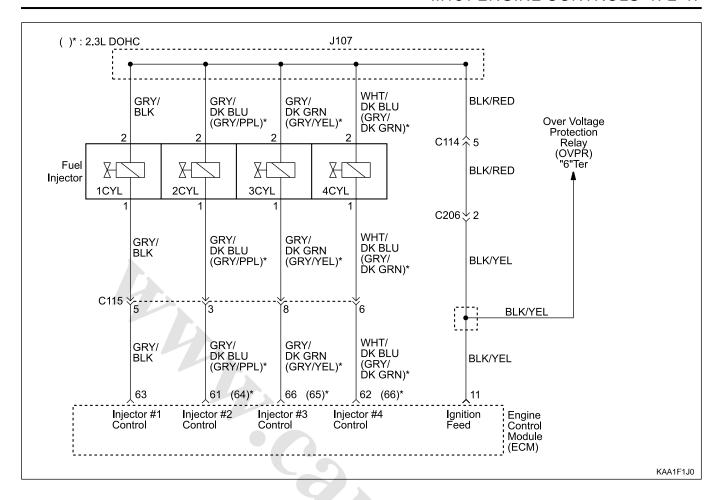
Measure the Current Consumption of Fuel Pump


- 1. Remove the fuel pump relay from fuse and relay box in trunk, and turn the ignition switch to "ON" position.
- 2. Using a multimeter, measure the current consumption by connecting the terminal No. 30 and No. 87 of the fuel pump relay connector.

Specified Value	5 ~ 9 A
-----------------	---------

Notice: Replace the fuel pump relay if the measured value is over 9 A.

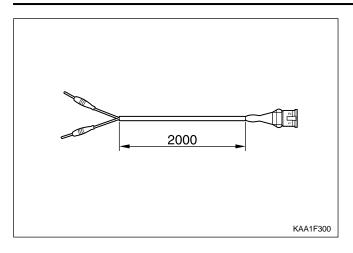
FUEL INJECTOR

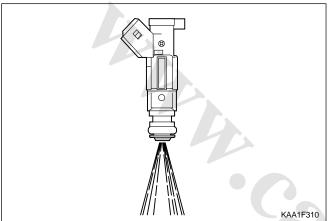

- 1 O-Ring
- 2 Injector
- 3 Injector Bracket

- 4 O-Ring
- 5 Fuel Rail

The Multipoint Fuel Injection (MFI) assembly is a solenoid-operated device controlled by the Engine Control Module (ECM) that meters pressurized fuel to an each individual cylinder. The injector sprays the fuel, in precise quantities at a point in time determined by the ECM, directly towad the cylinder intake valve. ECM energizes the fuel injector solenoid to lift the needle valve and to flow the fuel through the orifice. This injector's discharge orifice calibrated to meet the effective fuel atomization necessary for both ensuring the maximum homogeneity in the air-fuel mixture and holding the condensation along the walls of the intake tract to a minimum.

Fuel enters the top feed injector from above and flows through its vertical axis. The lower end extends into the intake valve. Fuel from the tip is directed at the intake valve, causing it to become further atomized and vaporized before entering the combustion chamber.


A fuel injector which is stuck partially open would cause a loss of fuel pressure after the engine is shut down. Also, an extended crank time would be noticed on some engines. Dieseling could also occur because some fuel could be delivered to the engine after the ignition is turned off.



Failure Code	Description	Trouble Area	Maintenance Hint
	No. 1 injector short circuit to battery	When malfunction of injector circuit	Inspection the power to injector #1 or bad contact
72		Injector #1 short circuit to	Inspection the injector
		power	Inspection the ECM
70	No. 1 injector short circuit to ground or	When malfunction of injector circuit	Inspection the ECM pin 63 about short circuit or open with bad contact
73	open	Injector #1 short circuit to	Inspection the injector
		ground or open	Inspection the ECM
	No. 2 injector short circuit to battery	When malfunction of injector circuit	Inspection the power to injector #2 or bad contact
74		Injector #2 short circuit to	Inspection the injector
		power	Inspection the ECM
	No. 2 injector short circuit to ground or	When malfunction of injector circuit	Inspection the ECM pin 64 about short circuit or open with bad contact
75	open	injector #2 short circuit to	Inspection the injector
		ground or open	Inspection the ECM
70	No. 3 injector short circuit to battery	When malfunction of injector circuit	Inspection the power to injector #3 or bad contact
76		Injector #3 short circuit to	Inspection the injector
		power	Inspection the ECM

1F2-48 M161 ENGINE CONTROLS www.CarGeek.ir

Code	Description	Trouble Area	Maintenance Hint
	No. 3 injector short circuit to ground or	When malfunction of injector circuit	Inspection the ECM pin 65 about short circuit or open with bad contact
77	open	Injector #3 short circuit to	Inspection the injector
		ground or open	Inspection the ECM
	No. 4 injector short circuit to battery	When malfunction of injector circuit	Inspection the power to injector #4 or bad contact
78		Injector #4 short circuit to	Inspection the injector
		power	Inspection the ECM
	No. 4 injector short circuit to ground or	When malfunction of injector circuit	Inspection the ECM pin 66 about short circuit or open with bad contact
79	open	Injector #4 short circuit to	Inspection the injector
		ground or open	Inspection the ECM

Injector Spray Pattern Check

- 1. Turn the ignition switch OFF.
- 2. Remove the fuel injector connectors.
- Remove the fuel distributor and injector with a unit.
 At this time, do not remove the supply and return line

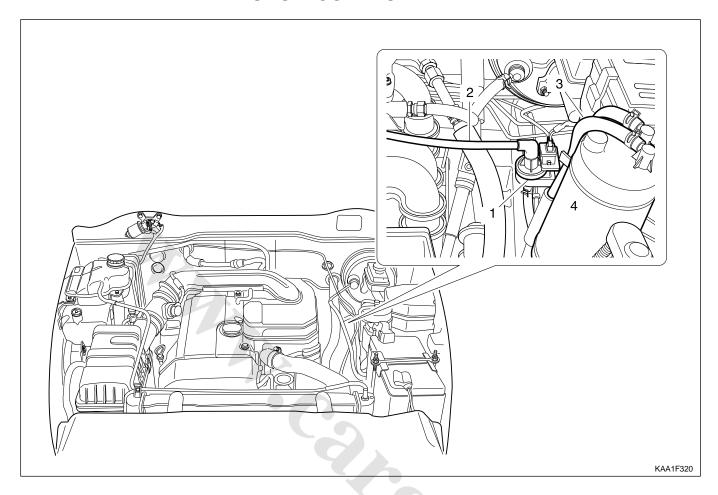
Notice: Prepare the beaker for taking the fuel.

- 4. Connect the shop made cable to the inject or with a firing order.
- 5. Connect the other end of shop made cable to the positive battery cable and negative battery cable.
- 6. Turn the ignition switch ON.
- 7. Check the inject or for normal spray pattern as shown in the figure. Check inject or for leaks or later drop.

Injector Resistance Inspection

- 1. Turn the ignition switch OFF.
- 2. Remove the fuel injector connectors.
- Meas ure the fuel injector coil resistance using a multimeter.

Specified Value	14 ~ 17 Ω
-----------------	-----------


Notice: Replace the fuel injector if the measured value is out of the specified values. Check the connector and wire connection between the ECM and the injector if the measured values are normal.

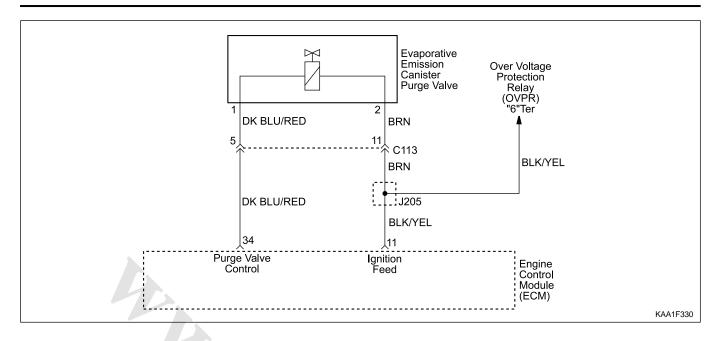
Injector Pulse Width Inspection

- 1. Turn the ignition switch OFF.
- 2. Install the scan tool.
- 3. Turn the ignition switch ON.
- 4. Monitor the "INJECTION TIME" with a scan tool.

Cranking	8.0 ms
Engine Idle	3 ~ 5 ms
Wide Open Throttle (WOT)	14 ms

PURGE CONTROL VALVE

- 1 Purge Control Valve
- 2 Line to Engine


- 3 Line to Canister
- 4 Canister

The fuel vaporization control system is installed to inhibit the fuel vaporized gas from discharging into the atmosphere. The fuel vaporized gas that is accumulated in the canister abstracts through the purge control valve purification during the engine combustion (except the decreasing mode) and coolant temperature of over 80 °C. For this reason, the Engine Control Module (ECM) transacts the engine speed, air inflow quantity, coolant temperature, and intake temperature.

The purge control valve is activated by the ECM frequency according with the engine rotating speed to adjust the purification rate. The purification rate is determined by the continuous valve opening interval.

The purge control valve is activated by the ECM for the following conditions:

- Coolant temperature of over 80 °C
- Engine speed of over 1,000 rpm
- 2 minutes after starting
- When the fuel cut-off mode is not activated

Failure Code	Description	Trouble Area	Maintenance Hint
40	Purge control valve short circuit to battery	When short circuit to power source	 Inspection the ECM pin 34 about short circuit or open with bad contact
41	Purge control valve short circuit to ground or open	When short circuit to ground or open	 Inspection the source power of valve Inspection the purge control solenoid vale
54	Purge control circuit malfunction	When malfunction of purge control : not work	Inspection the ECM

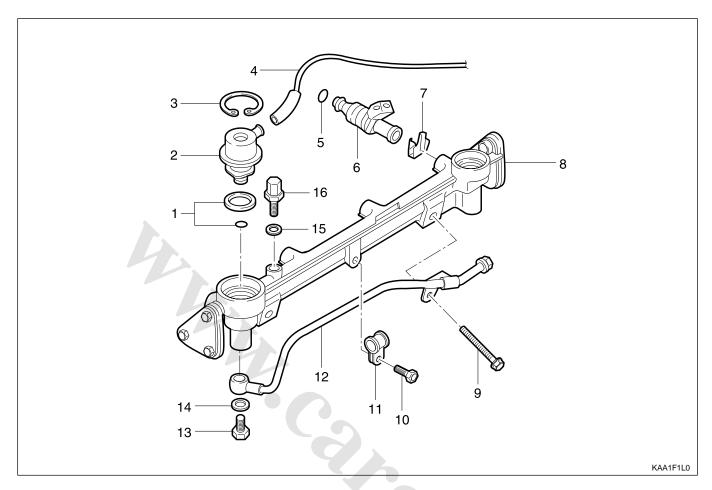
Test

- 1. Maintain the normal temperature and idling state by operating the engine.
- 2. Connect the ECM terminal No. 11 and No. 34 and check for normal operation through the output waves using oscilloscope.

Notice: Test during purge control valve operation after the minimum of 1 minute after the engine turned on.

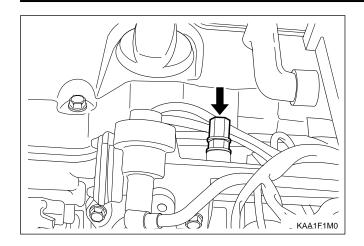
3. Connect the ECM terminal No. 34 and No. 10 and check for current consumption during the ignition switch ON.

Specified Value	0.3 ~ 0.5 A
-----------------	-------------


4. Remove the line to canister and measure the pressure with the vacuum pressure gauge.

	> 500 mbar
Specified Value	(after approx. 1 min.) purge control valve operates at this time

Notice: Test while at normal temperature and at idling state by operating the engine.

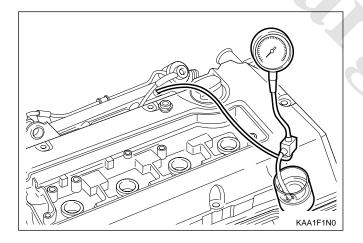

SSANGYONG MY2002

FUEL RAIL

- 1 O-Ring
- 2 Fuel Pressure Regulator
- 3 Circlip
- 4 Vacuum Hose
- 5 O-Ring
- 6 Injector
- 7 Injector Bracket
- 8 Fuel Rail

- 9 Combination Bolt
- 10 Bolt
- 11 Clamp
- 12 Fuel Return Line
- 13 Hollow Bolt
- 14 Seal Ring
- 15 Seal Ring
- 16 Fuel Pressure Test Connector

Fuel Pressure Test


Tools Required

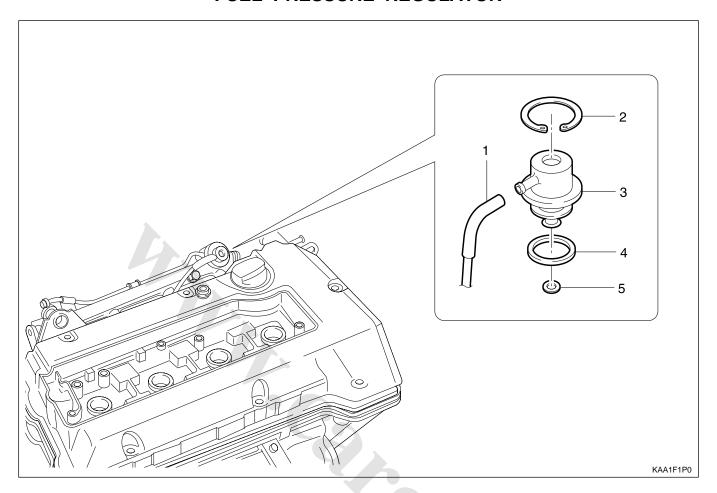
103 589 00 21 00 Fuel Pressure Gauge

- 1. Turn the ignition switch to "OFF" position.
- 2. Remove the fuel pressure test connector.
- 3. Connect the fuel pressure gauge to the fuel pressure test connector.
- 4. Test the fuel pressure at idling by operating the engine using the fuel pressure gauge 103 589 00 21 00.

Vacuum Hose Connected (bar)	3.2 ~ 3.6
Vacuum Hose Disconnected (bar)	3.7 ~ 4.2

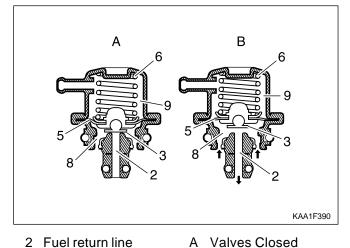
5. Replace the pressure regulator diaphragm if out of the specification.

Internal Leakage Test


- 1. Connect the fuel pressure gauge 103 589 002100 to the fuel pressure test connector.
- 2. Stop the engine for approximately 30 minutes and then check the fuel pressure changes.

Pressure change	
Fuel pressure	Fuel leakage at the injector
drops slowly	 Faulty fuel pressure regulator's diaphragm and O-ring
Fuel pressure drops rapidly	Faulty check valve in the fuel pump

3. If there is no change in fuel pressure and maintain the following pressure over 30 minutes, it is normal.


Fuel pressure (bar)	≥ 2.5

FUEL PRESSURE REGULATOR

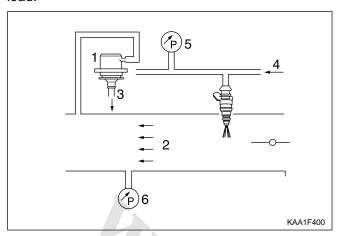
- Vacuum Hose
- 2 Circlip
- 3 Fuel Pressure Regulator

- 4 O-Ring
- 5 O-Ring

B Valves Opened

- 2 Fuel return line
- 3 Valve
- Diaphragm
- Compression Spring
- 8 Fuel Chamber
- 9 Spring Chamber

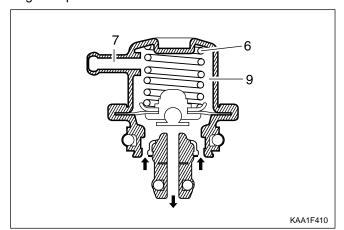
Function of the Fuel Pressure Regulator


The fuel pressure regulator maintains the fuel pressure in the fuel line with the pressure of 3.2 bars to 3.8 bars according to the intake manifold pressure. This operating pressure cannot be changed, and the fuel injection volume will be only determined by the injection time. Over supplied fuel returns to the fuel tank through the return line.

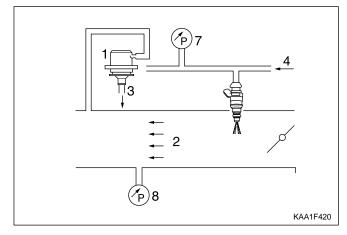
<Operating at full load>

There is no negative pressure applied to the spring chamber (9) during the full load, and it is separated from the fuel chamber (8) by the diaphragm (5).

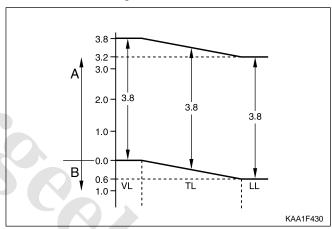
When the fuel pressure goes up, the diaphragm forces the compression spring (6) in the direction of compression. At this moment, the valve (3) sticks to the diaphragm by the fuel pressure, and the fuel return line (2) opens. The fuel over supplied returns to the fuel tank through the return line.


The pressure difference between the fuel pressure and the intake manifold is about 3.8 bars during the full load.

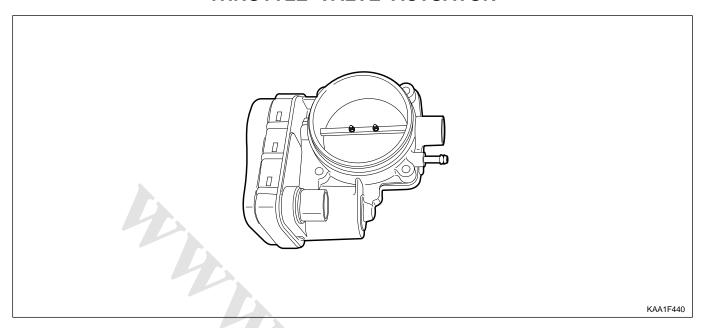
- 1 Fuel Pressure Regulator
- 2 Intake Manifold
- 3 Fuel Return (to fuel tank)
- 4 Fuel Supply (from fuel pump)
- 5 Fuel Pressure (approx. 3.8 bars)
- 6 Intake Manifold Negative Pressure (0 bar)


<Operating at Idle and partial load>

The spring chamber (9) is connected to the intake manifold with the vacuum hose at the intake pipe connection (7). The negative pressure generated in the intake manifold activates the diaphragm, and thus the fuel pressure gets reduced to the rate of the operating extent of the diaphragm by the intake manifold's negative pressure.


Consequently, the fuel pressure in the fuel distributor changes by the intake manifold's negative pressure, and the injector's fuel pressure gets reduced independently to the throttle valve's position. Thus, the fuel injection volume can only be determined according to the injector's injecting duration.

The pressure difference between the fuel pressure and the intake manifold is approx. 3.2 bars during idling.


- 1 Fuel Pressure Regulator
- 2 Intake Manifold
- 3 Fuel Return (to fuel tank)
- 4 Fuel Supply (from fuel pump)
- 7 Fuel Pressure (approx. 3.2 bars)
- 8 Intake Manifold Negative Pressure (0.6 bars)

<Fuel Pressure Diagram>

- A Fuel pressure
- B Intake Manifold Negative Pressure
- LL Idling
- TL Partial load
- VL Full load

INDUCTION SYSTEM THROTTLE VALVE ACTUATOR

The throttle actuator is actuated by the Engine Control Module (ECM) according to the position of the accelerator pedal position.

It has two potentiometers which signal the position of the throttle valve to the ECM to enable it to recognize the various engine load states.

Ignition "Off"

In the de-energized states the throttle valve position is determined to be spring capsule.

Ignition "On"

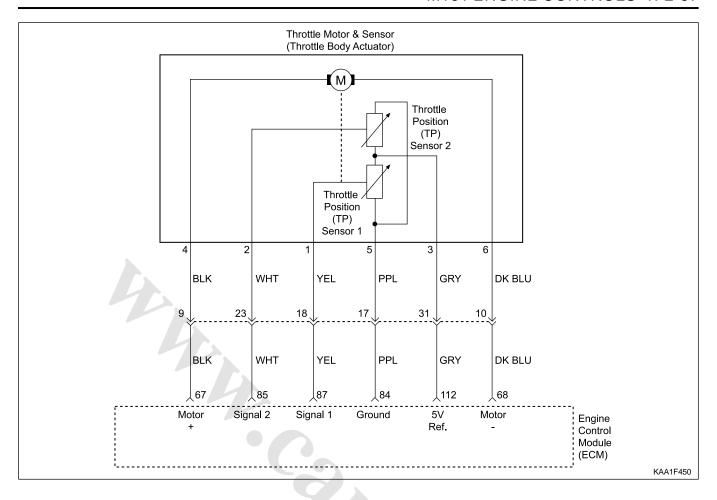
When the ignition S/W on the servo motor in the throttle actuator is operated by the ECM. The throttle valve adopts a position in line with the coolant temperature.

Closed position

In the closed throttle position, the servo motor controls engine speed by operating the throttle valve further (greater mixture) or closing it further (reduced mixture), depending on coolant temperature and engine load. When this is done, the throttle valve can be closed further by the servo motor overcoming the force of the spring capsule (mechanical end stop). If the actuator is de-energized, the throttle valve is resting against

the spring capsule.

Consequently, the throttle valve opening is a constant 10 - 12° approximately.


At no load, this produces an engine speed of about 1,800 rpm

Driving

When driving (part/full throttle), the servo motor controls the throttle valve in line with the various load states and according to the input signals from the pedal value sensor according to the input signals from the pedal value sensor according to the position of the accelerator pedal.

The function of the EA (electronic accelerator) in the ECM determines the opening angle of the throttle valve through the throttle actuator. Further functions are;

- Idle speed control
- Cruise control
- Reducing engine torque for ASR/ABS operation
- Electronic accelerator emergency running
- Storing faults
- Data transfer through CAN

Failure Code	Description	Trouble Area	Maintenance Hint
104	Throttle position sensor 1 low voltage	TPS 1 short circuit to ground or open	Monitoring the actual values through scan tool
105	Throttle position sensor 1 high voltage	TPS 1 short circuit to power	 Inspection the ECM pin 84, 85, 87, 112, 67, 68 about short circuit or open with
108	Throttle position sensor 2 low voltage	TPS 2 short circuit to ground or open	bad contact Inspection the throttle valve actuator
109	Throttle position sensor 2 high voltage	TPS 2 short circuit to power	Inspection the ECM
116	Throttle actuator learning control failure	When actuat or adaption fluctuation or not meet the condition	
119	Throttle valve return spring failure	When return spring defective of actuator	
121	Throttle act uator failure	When supply voltage of the actuat or short circuit to power	
123	Different mass air flow sensor signal with throttle position sensor	When shut down of out put driver	
125	Both throttle position sensor failure	When defective of both potentiometers	

Failure Code	Description	Trouble Area	Maintenance Hint
126	Throttle position sensor 1 not plausible with Throttle position sensor 2	When difference between TPS 1 and TPS 2	 Monitoring the actual values through scan tool Inspection the ECM pin 84, 85, 87, 112,
127	High permanent throttle signal	When failure of wiring harness or actuator	67, 68 about short circuit or open with bad contact
185	Mass air flow sensor and throttle position sensor failure	When difference between MAF and TPS signal	Inspection the throttle valve actuatorInspection the ECM

Circuit Description

The ECM supplies a 5 volt reference signal and a ground to the TP sensor. The TP sensor sends a voltage signal back to the ECM relative to the throttle plate opening. The volt age signal will vary from approximately $0.3 \sim 0.9$ volts at closed throttle, to over $4.0 \sim 4.6$ volts at Wide Open Throttle (WOT).

The TP sensors serve for engine load control according to the drive pedal command. Load adjustments independent of the drive pedal command can be implemented; such functions are, for instance, idle control, speed control, drive slip control, load shock damping, and similar functions.

When the actuator current fails, the throttle valve is returned to emergency operating position by a spring. The throttle valve position, there by the actuator drive position check back is provided by two potentiometers. The motor positions the throttle valve against the return spring force. Motor and return spring are two separate energy sources. Each of them is able to position the throttle valve in emergency position alone. Throttle valve position check back and monitoring is provided by two actual value potentiometers connected to the engine control electronics.

Throttle Actuator Inspection

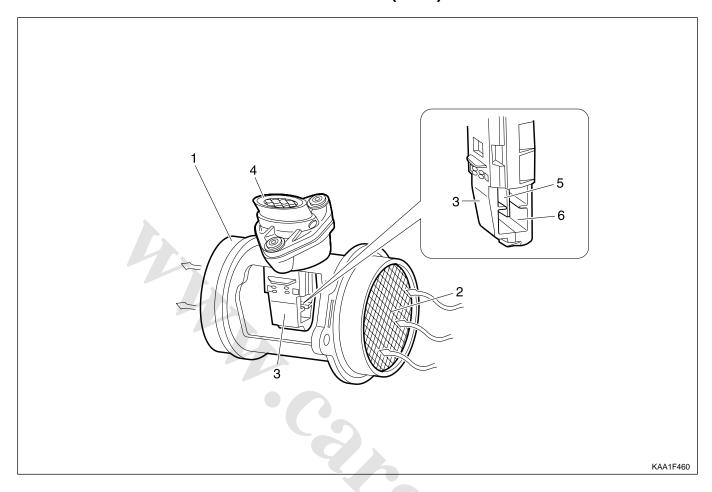
- 1. Turn the ignition switch to "ON" position.
- 2. Measure the TPS 1 signal volt age at the ECM pin No. 87 and TPS 2 signal volt age at the ECM pin No. 85.

	Pedal Position	Specified Value
TPS 1	Closed	0.3 ~ 0.9 v
1151	Opened	4.0 ~ 4.6 v
TPS2	Closed	4.0 ~ 4.6 v
	Opened	0.3 ~ 0.9 v

Throttle Actuator DC Motor Inspection

- 1. Turn the ignition switch to "ON" position.
- 2. Measure the signal volt age between the ECM pin No. 67 and No. 68.

Application		Specified Value
	Ignition "ON"	0.8 ~ 2.3 v
Engine Status	ldling	1.0 ~ 2.5 v (Coolant temperature is over 70°C)


Throttle Actuator DC Motor Resistance

- 1. Turn the ignition switch to "OFF" position.
- 2. Measure the resistance between the ECM pin No. 67 and No. 68.

Specified Value	< 10 Ω
-----------------	--------

HOT FILM AIR MASS (HFM) SENSOR

- 1 Housing
- 2 Protector Net
- 3 Electronic Housing

- 4 Connector
- 5 Hot Film Air Mass Sensor
- 6 Measuring Port

The Hot Film Air Mass (HFM) sensor with recognition of flow direction related to pulsating flow is designed for recording load on Engine Control Module (ECM) by measuring the output voltage proportional to the reference voltage of the ECM.

Mass Air Flow Sensor

Mass Air Flow (MAF) is a thermal flow meter whose sensor element with its temperature sensors and heating area is exposed to the MAF to be measured. A heating area located in the center of a thin membraneis controlled to an over temperature by a heating resistor and a temperature sensor of this membrane. And the value of overtemperature depends on the temperature of the in-flowing air.

Two temperature sensors on upstream and downstream of the heating area show the same temperature without incoming flow. With incoming flow, upstream part is cooled down but downstream temperature retains its temperature more or less due to the air heated up in the heating area. This temperature difference in quantity and direction depends on the direction of the incoming flow.

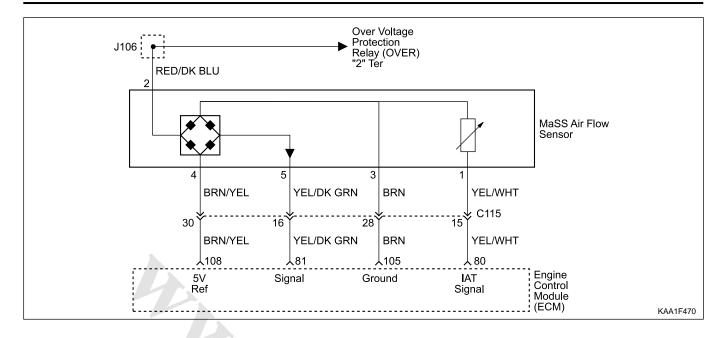
ECM modulates the flow of heating current to maintain the temperature differential between the heated film and the intake air at a constant level. The amount of heating current required to maintain the temperature thus provides an index for the MAF. This concept automatically compensates for variations in air density, as this is one of the factors that determines the amount of warmth that the surrounding air absorbs from the heated element. MAF sensor is located between the air filter and the throttle valve.

Under high fuel demands, the MAF sensor reads a high mass flow condition, such as Wide Open Throttle (WOT). The ECM uses this information to enrich the mixture, thus increasing the fuel injector on-time, to provide the correct amount of fuel. When decelerating, the mass flow decreases. This mass flow change is sensed by the MAF sensor and read by the ECM, which then decreases the fuel injector on-time due to the low fuel demand conditions.

To facilitate the installation of the HFM in the intake passage, lubricating agents may be used. However, when lubricants are used care must be taken to ensure that they do not enter the flow passage and cannot be sucked in with the air flow.

The following tables show the relationship between MAF and output voltage.

Mass Air Flow (kg/h)	Voltage (V)	Mass Air Flow (kg/h)	Voltage (V)
0	0.95 ~ 1.05	250	3.51
10	1.28	370	3.93
15	1.41	480	4.23
30	1.71	640	4.56
60	2.16	800	4.82
120	2.76		


Intake Air Temperature

The Intake Air Temperature (IAT) sensor is a part of Hot Film Air Mass (HFM) sensor and is a thermistor, a resistor which changes value based on the temperature of theair entering the engine. Low temperature produces a high resistance, while high temperature causes a low resistance as the following table.

The ECM provides 5 volts to the IAT sensor through a resistor in the ECM and measures the change in voltage to determine the IAT. The voltage will be high when the manifold air is cold and low when the air is hot. The ECM knows the intake IAT by measuring the voltage.

The IAT sensor is also used to control spark timing when the manifold air is cold.

Temp. (°C)	R min.(Ω)	R nom. (Ω)	R max. (Ω)
-40	35140	39260	43760
-20	12660	13850	15120
0	5119	5499	5829
20	2290	2420	2551
40	1096	1166	1238
60	565	609	654
80	312	340	370
100	184	202	222
120	114	127	141
130	91	102	114

Failure Code	Description	Trouble Area	Maintenance Hint
03	Intake air temperature sensor low voltage	IAT sensor short circuit to ground or open	Monitoring the actual air temperature through scan tool
04	Intake air temperature sensor high voltage	IAT sensor short circuit to power	Inspection the ECM pin 80, 79 about short circuit or open with bad contact
05	Intake air temperature sensor plausibility	Malfunction in recognition of IAT	Inspection the IAT sensor (integrated in HFM sensor)
		When functional problem	Inspection the ECM
09	Mass air flow sensor plausibility	Malfunction in recognition of MAF	Monitoring the actual air mass flow through scan tool
		When air mass not plausible	Inspection the ECM pin 81, 105 about
10	Mass air flow sensor low voltage	MAF sensor short circuit to ground or open	short circuit or open with bad contact Inspection the MAF sensor (integrated in
11	Mass air flow sensor high voltage	MAF sensor short circuit to power	HFM sensor) Inspection the ECM

Circuit Description

The heated element on the MAF is a platinum film resistor (heater). It is located on a ceramic plate together with the other elements in the bridge circuit. The temperature sensitive resistor (flow sensor) also included in the bridge. The separation of heater and flow sensor facilitates design of the control circuitry. Saw cuts are employed to ensure thermal decoupling between the heating element and the intake air temperature (IAT) sensor. The complete control circuitry is located on a single layer. The voltage at the heater provides the index for the mass air flow. The MAF's electronic circuitry then converts the voltage to a level suitable for processing in the ECM. This device does not need a burn off process to maintain its measuring precision over an extended period. In recognition of the fact that most deposits collect on the sensor element's leading edge, the essential thermal transfer elements are located downstream on the ceramic layer. The sensor element is also design to ensure that deposits will not influence the flow pattern around the sensor.

The IAT sensor uses a thermistor to control the signal voltage to the ECM. The ECM supplies 5 volt reference and a ground to the sensor. When the air is cold, the resistance is high; therefore the IAT signal voltage will be high. If the intake air is warm, resistance is low; therefore the IAT signal voltage will be low.

Mass Air Flow Sensor Input Voltage Inspection

- 1. Turn the ignition switch to "ON" position.
- 2. Measure the signal voltage between the ECM pin No. 103 and No. 104.

Application		Specified Value
	Ignition "ON"	0.9 ~ 1.1 V
Engine Status	ldling	1.3 ~ 1.7 V (Coolant temperature is over 70°C)

Notice: If the measured value is not within the specified value, the possible cause may be in cable or MAF sensor in itself. Perform the 5 volt power supply inspection procedures.

Mass Air Flow Sensor 5 volt Power Supply Inspection

- 1. Turn the ignition switch to "OFF" position.
- 2. Disconnect the HFM sensor connector.
- 3. Turn the ignition switch to "ON" position.
- 4. Measure the voltage between the ECM pin No. 108 and MAF sensor connecter terminal No. 3.

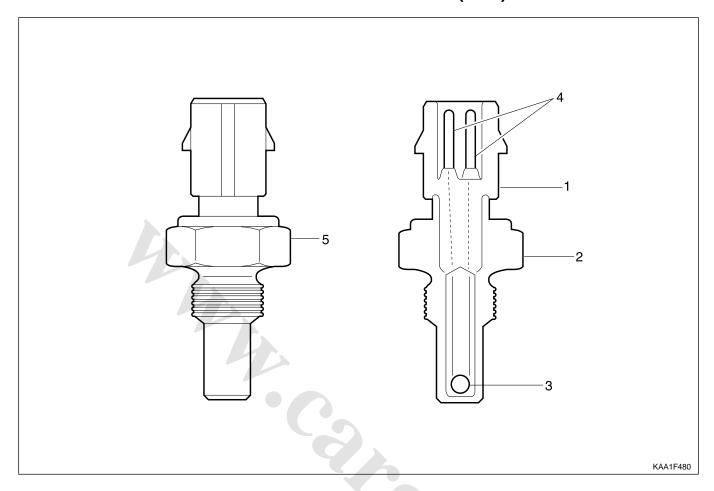
Specified Value	4.7 ~ 5.2 V
-----------------	-------------

Notice: If the measured value is not within the specified value, the possible cause may be in cable or ECM coupling.

5. Measure the voltage between the ECM pin No. 105 and MAF sensor connecter terminal No. 4.

Specified Value	4.7 ~ 5.2 V
-----------------	-------------

Notice: If the measured value is not within the specified value, the possible cause may be in cable or ECM coupling.

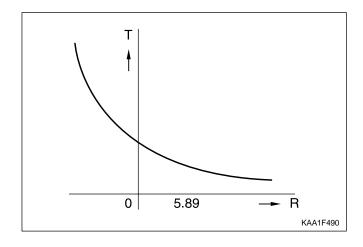

Mass Air Flow Sensor 12 volt Power Supply Inspection

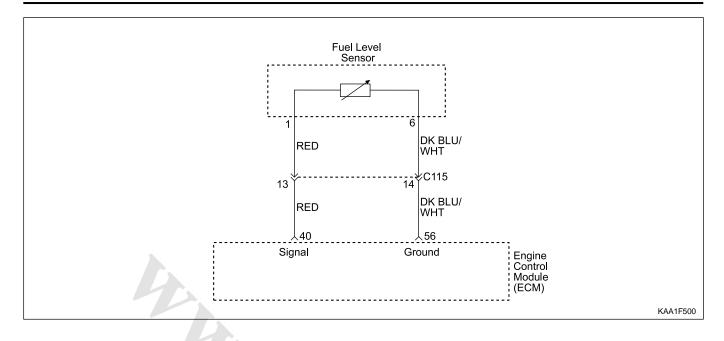
- 1. Turn the ignition switch to "OFF" position.
- 2. Disconnect the HFM sensor connector.
- 3. Turn the ignition switch to "ON" position.
- 4. Measure the voltage between the ECM pin No. 105 and MAF sensor connecter terminal No. 2.

Specified Value	11 ~ 14 V
-----------------	-----------

Notice: If the measured value is not within the specified value, the possible cause may be in cable or Over Voltage Protection Relay (OVPR).

ENGINE COOLANT TEMPERATURE (ECT) SENSOR


- 1 Artificial Resin Housing
- 2 Metal Housing
- 3 NTC (Negative Temperature Coefficient) Resistor
- Connector
- **Engine Coolant Temperature Sensor**


Engine Coolant Temperature (ECT) sensor detects coolant temperature and supplies information to the ECM. It is composed of metal housing with two NTC resistor, 4 pin connector. The ECM provides a 5 volt signal to the ECT sensor through a dropping resistor. When the engine is cold, the ECT sensor provides high resistance, which the ECM detects as a high signal voltage. As the engine warms up, the sensor resistance becomes lower, and the signal voltage drops. At normal engine operating temperature, the ECT signal will measure about 1.5 to 2.0 volts.

The ECM uses information about coolant temperature to make the necessary calculations for:

- Fuel delivery
- Ignition control
- Knock sensor system
- Idle speed
- Torque converter clutch application
- Canister purge
- Cooling fan operation
- Others

_ (0.0)	- 1. (a)	
Temperature (°C)	Resistance (Ω)	Voltage (V)
-40	48,550	4.90
-30	27,000	4.82
-20	15,570	4.70
-10	9,450	4.52
0	5,890	4.43
10	3,790	3.96
20	2,500	3.57
30	1,692	3.14
40	1,170	2.70
50	826	2.26
60	594	1.86
70	434	1.51
80	322	1.22
90	243	0.98
100	185	0.78
110	143	0.63
120	111.6	0.50
130	88	0.40
140	71.2	0.33

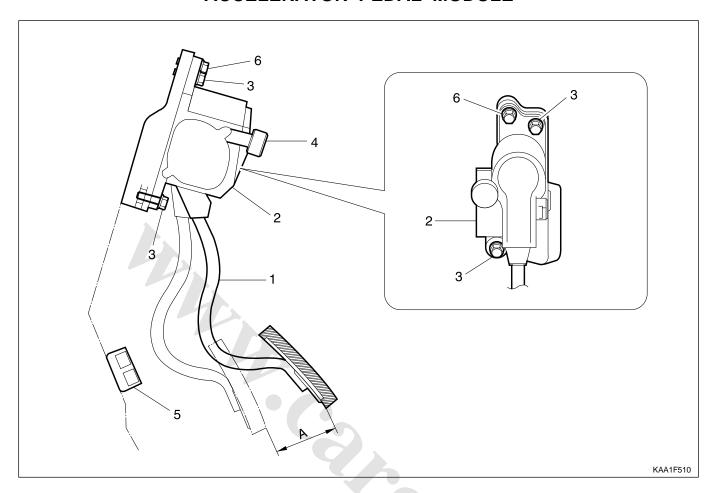
Failure Code	Description	Trouble Area	Maintenance Hint
00	Engine coolant temperature sensor low voltage	ECT sensor short circuit to ground or open	Monitoring the actual coolant temperature through scan t ool
01	Engine coolant temperature sensor high voltage	ECT sensor short circuit to power	 Inspection the ECM pin 78, 79 about short circuit or open with bad contact Inspection the ECT sensor
02	Engine coolant temperature sensor plausibility	Malfunction in recognition of ECT When drop to about 50°C below after warm up	Inspection the ECM
06	Engine coolant temperature insufficient for closed loop fuel control	Malfunction in recognition of ECT When minimum temperature for lambda control after warm up	

Circuit Description

The ECT sensor uses a thermistor to control the signal voltage to the ECM. The ECM supplies a voltage on the signal circuit to the sensor. When the engine coolant is cold, the resistance is high; therefore the ECT signal voltage will be high

Engine Coolant Temperature Sensor Inspection

- 1. Turn the ignition switch to "ON" position.
- 2. Measure the voltage between the ECM pin No. 78 and No. 79.


Temperature (°C)	Specified Value (V)
20	3.57
80	1.22
100	0.78

- 3. Turn the ignition switch to "OFF" position.
- 4. Disconnect the ECT sensor connector.
- 5. Turn the ignition switch to "ON" position.
- 6. Measure the resistance between the ECT sensor terminal pin No. 1 and No. 4.

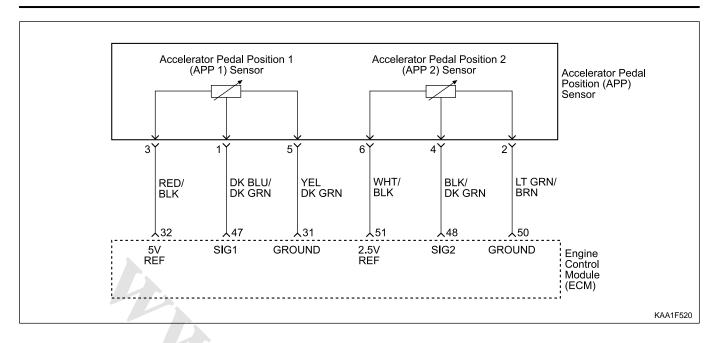
Temperature (°C)	Specified Value (Ω)
20	2,500
80	322
100	185

Notice: Replace wiring and coolant temperature sensor if out of specified value.

ACCELERATOR PEDAL MODULE

- 1 Accelerator Pedal
- 2 Accelerator Pedal Sensor
- 3 Bolts

- 4 6-Pin Connector
- 5 Kick-down Switch
- 6 Nut


The Acceleration Pedal Position (APP) sensor is mounted on the accelerator pedal assembly. The sensor is actually two individual APP sensors and one housing. This sensor works with the Throttle Position (TP) sensor to provide input to the Engine Control Module (ECM) regarding driver requested accelerator pedal and throttle angle at the throttle body.

When the APP sensor is defected:

When the APP 1 or APP 2 sensor is defected condition, the engine is still running at idle condition but, the accelerator pedal reaction is not response correctly and also, the engine rpm will be reacted to 4,000 rpm slowly. If the APP 1 sensor is out of order, the APP 2 sensor will be conducted with signal as adefault signal but, the throttle valve opening is limited 60% and delayed opening speed.

When the TP sensor or servo motor is defected:

When the TP 1, 2 sensor or servomotor is defected condition, the throttle valve will be closed to the spring capsule by spring force, at this condition, the throttle valve will open $10^{\circ} \sim 20^{\circ}$ and engine rpm will be controlled by ECM will opening (On/Off) time of injector. The engine rpm will be maintaining 900 rpm (at idle) to 1,800 according to the engine load.

Failure Code	Description	Trouble Area	Maintenance Hint
122	Acceleration pedal position sensor signal failure	When malfunction of APP sensor	 Monitoring the actual values through scan tool Inspection the ECM pin 31, 47, 32, 48,
160	Acceleration pedal position 1 sensor low voltage	APP 1 sensor short circuit to ground or open	59, 51 about short circuit or open with bad contactInspection the APP sensor
161	Acceleration pedal position sensor 1 high voltage	APP 1 sensor short circuit to power	Inspection the ECM
162	Acceleration pedal position sensor 2 low voltage	APP 2 sensor short circuit to ground or open	
163	Acceleration pedal position sensor 2 high voltage	APP 2 sensor short circuit to power	
164	Accelerator pedal position sensor 1 not plausible with accelerator pedal position sensor 2	When difference between APP 1 sensor and APP 2 sensor	
167	Both setpoint accelerator pedal position sensor defective	When defective of both APP sensor	

Circuit Description

The ECM supplies a 5 or 2.5 volt reference signal and a ground to the APP sensor 1 or 2. The ECM calculates on these signal lines. The APP sensor output changes as the accelerator pedal is moved. The output of the APP 1 and APP 2 sensor are low, about $0.4 \sim 0.7$ volts and $0.2 \sim 0.35$ volts respectively at the closed throttle position. As pushing the accelerator pedal, the output increases so that the output voltages will be about $4.3 \sim 4.8$ volts and $2.1 \sim 2.4$ volts individually when accelerating fully with the kick down, at Wide Open Throttle (WOT).

Acceleration Pedal Position Sensor 1 Inspection

- 1. Turn the ignition switch to "ON" position.
- 2. Measure the signal voltage between the ECM pin No. 47 and No. 31 while operating the accelerator pedal as following conditions.
 - Not depress the pedal (closed throttle position)
 - Fully depress the pedal (full throttle with kick down)

Condition of Throttle	Specified Value (V)
Valve	
Closed Throttle Valve	0.3 ~ 0.7
Fully Depressed Throttle Valve	4.3 ~ 4.8

Notice: If measured value is not within the specified value, check the pedal valve sensor and the supply voltage to APP 1 sensor.

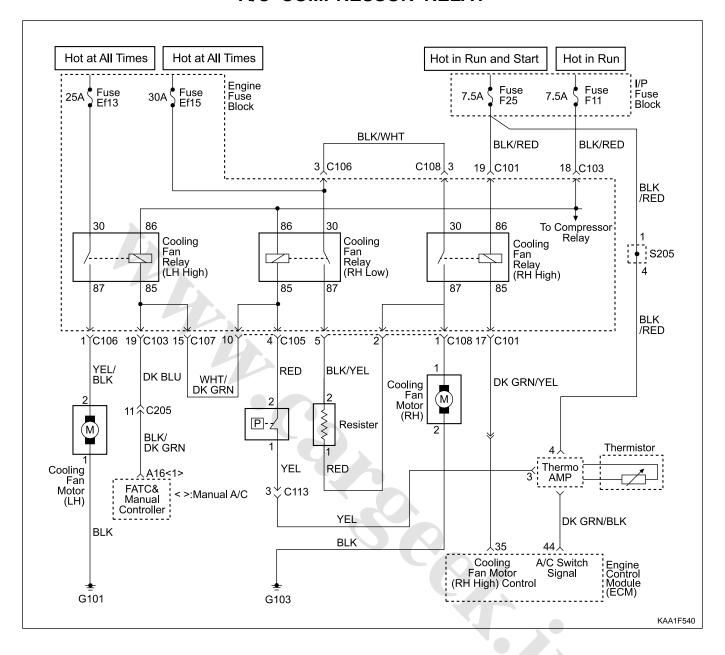
Acceleration Pedal Position Sensor 2 Inspection


- 1. Turn the ignition switch to "ON" position.
- 2. Measure the signal voltage between the ECM pin No. 48 and No. 50 while operating the accelerator pedal as following conditions.
 - Not depress the pedal (closed throttle position)
 - Fully depress the pedal (full throttle with kick down)

Condition of Throttle	Specified Value (V)
Valve	
Closed Throttle Valve	0.1 ~ 0.4
Fully Depressed Throttle Valve	2.1 ~ 2.5

Notice: If measured value is not within the specified value, check the pedal valve sensor and the supply voltage to APP sensor 2.

COOLING FAN

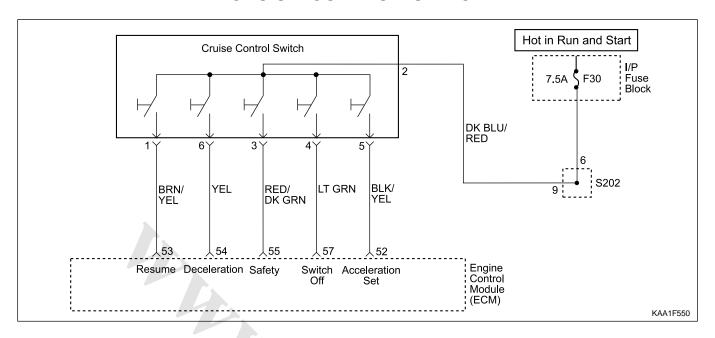

Failure Code	Description	Trouble Area	Maintenance Hint
44	Cooling fan (HI) relay short circuit to power	Cooling fan short circuit to power	Inspection the Engine Control Module (ECM) pin 35 about short circuit or open
45	Cooling fan (HI) relay short circuit to ground or open	Cooling fan short circuit to ground or open	 with bad contact Inspection the power source Inspection the cooling fan Inspection the ECM

Circuit Description

Ignition voltage is supplied directly to the cooling fan relay coil. The ECM controls the relay by grounding the control circuit. When the ECM is commanding a command ON, the voltage of the control circuit should be low (near 0 volt).

When the ECM is commanding the control circuit should be high (near battery voltage). If the fault detection circuit senses a voltage other than what is expected, the fault line status will change causing the fault code to set.

A/C COMPRESSOR RELAY

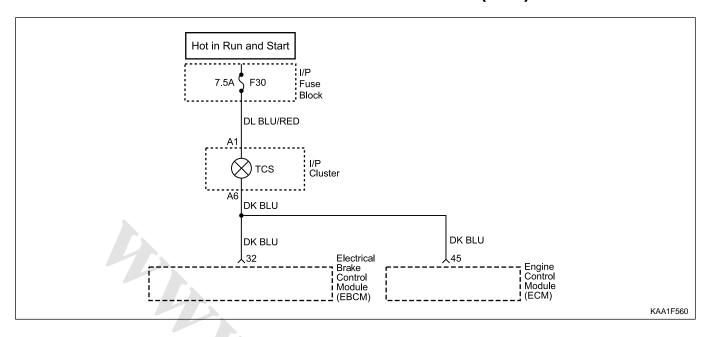


Failure Code	Description	Trouble Area	Maintenance Hint
228	A/C compressor relay short circuit to battery	When malfunction of A/C compressor control	Monitoring the actual operation through scan tool
229	A/c compressor relay short circuit to ground or open		Inspection the Engine Control Module (ECM) pin 44 about short circuit or open with bad contact
			Inspection the relay short circuit or open
			Inspection the ECM

Circuit Description

When the ECM detects that A/C has been requested, the ECM will activated the A/C clutch relay. When the relay has been activated, voltage should be present at both the A/C clutch relay and A/C switch circuit at ECM.

CRUISE CONTROL SWITCH

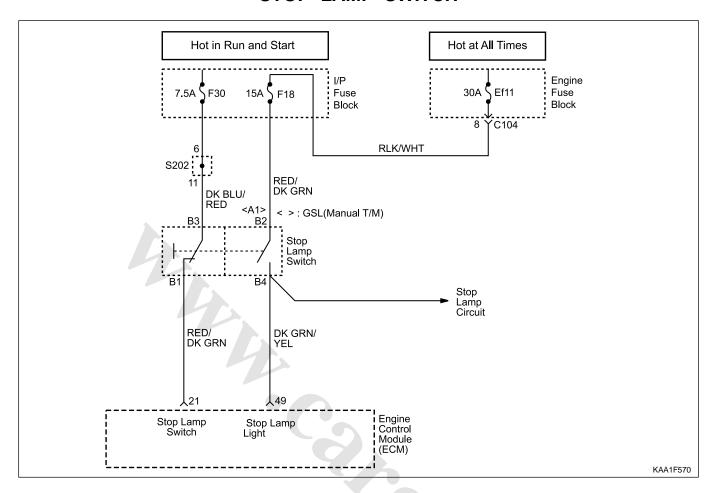


Failure Code	Description	Trouble Area	Maintenance Hint
129	Cruise control "OFF" due to message counter failure	Cruise control system message counter fault	 Monitoring the actual recognition status and vehicle speed signal through scan tool
130	Vehicle speed signal failure	When malfunction of auto-cruise system	 Inspection the Engine Control Module (ECM) pin 52, 53, 54, 55, 57 about short circuit or open with bad contact Inspection the CAN and ABS
131	Vehicle speed signal failure	Implausible condition of vehicle speed signal.	
132	Cruise control lever failure	Cruise control lever defective	 Inspection the cruise control lever switch Inspection the ECM
133	Cruise control acceleration failure	Cruise control system Implausible condition of acceleration signal	inspection the Low
134	Cruise control deceleration failure	Cruise control system Implausible condition of deceleration signal	

Circuit Description

Cruise control is an automatic speed control system that maintain adesired driving speed with out using the accelerator pedal. The vehicle speed must be greater than 40 km/h to engage cruise control.

TRACTION CONTROL SYSTEM (TCS)

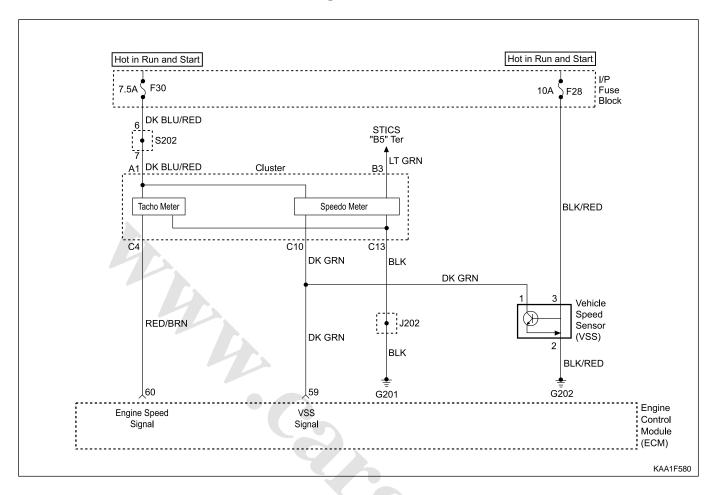

Failure Code	Description	Trouble Area	Maintenance Hint
150	TCS input signal short circuit to battery	TCS short circuit to power	Inspection the Engine Control Module (ECM) pin 45 about short circuit or open
151	TCS input signal short circuit to ground or open	TCS short circuit to ground or open	 with bad contact Inspection the TCS lamp of I/P cluster. Inspection the ECM

Circuit Description

Battery voltage is supplied to the TCS warning lamp with the ignition in ON and START. The warning lamp can be activated only by the Electrical Brake Control Module (EBCM) internally supplying ground to terminal 21. If the TCS input circuit is open or short, this failure code will be set.

SSANGYONG MY2002

STOP LAMP SWITCH



Code Description Trouble Area	Maintenance Hint
Stop lamp switch failure When malfunction of stop lamp switch-implausible condition of stop lamp signal input	 Monitoring the actual operational status and vehicle speed signal through scan tool Inspection the Engine Control Module (ECM) pin 49 about short circuit or open with bad contact Inspection the contact condition of stop lamp switch Inspection the ECM

Circuit Description

The stop lamp switch is normally opened. When the ignition switch ON and brake ON, the battery voltage is supplied to the ECM. A scan tool should display ON when brake pedal is depressed and should read OFF with brake pedal released.

ENGINE RPM

Failure Code	Description	Trouble Area		Maintenance Hint
32	Engine rpm output circuit short circuit to battery	When short circuit to battery	•	Monitoring the actual rpm in cluster Inspection the Engine Control Module (ECM) pin 60 about short circuit or open
33	Engine rpm output circuit short circuit to ground or open	When short circuit to ground or open	•	Inspection the cluster panel board circuit Inspection the ECM

EXHAUST SYSTEM

CATALYTIC CONVERTER

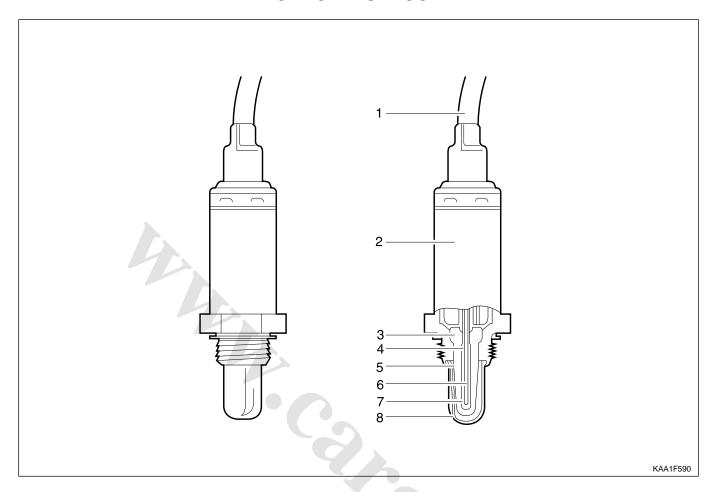
The purpose of the catalytic converter is to convert the three pollutants of carbon monoxide (CO), hydrocarbons (HC) and oxides of nitrogen (NOx) contained in the exhaust of gasoline engines, into the harmless compounds of water (H2O), carbon dioxide (CO2) and nitrogen (N2).

The catalytic converter contains acatalyst, a word coming from the Greek and which designates the Satary alf being C element essential for catalyst which triggers chemical reactions without itself being consumed.

These catalysts in the 3-way catalytic converter are the rare metals platinum (Pt) and rhodium (Rh).

The catalytic converter consists essentially of three main elements. The exhaust gases flow through the catalytic converter and, in so doing, coming into contact with rare metals (Pt and Rh).

The following chemical reaction are produced.

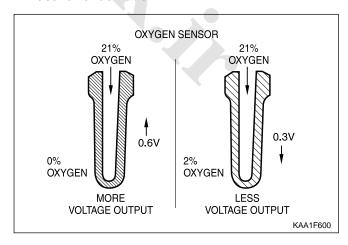

$$CO + O_2 \rightarrow CO_2$$

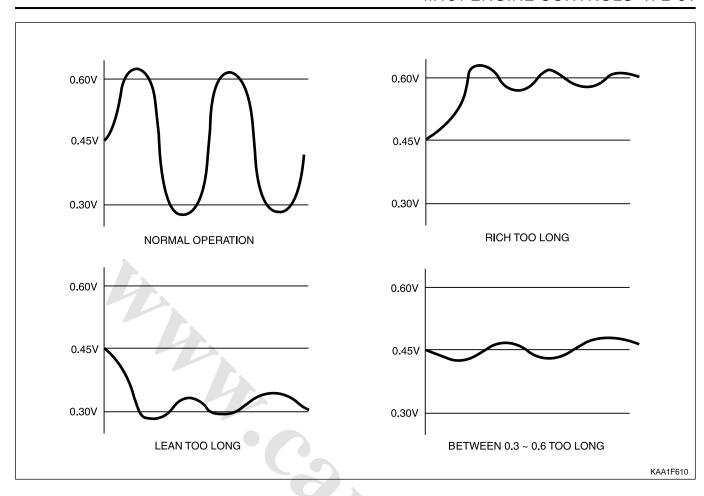
$$HC + O_2 \rightarrow CO_2 + H_2O$$

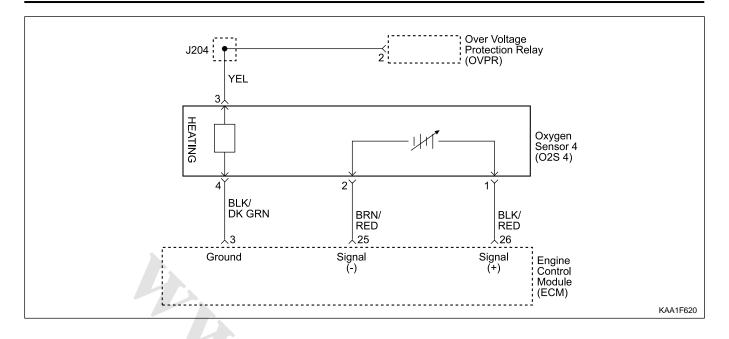
$$NO_x \rightarrow N_2 + O_2$$

OXYGEN SENSOR

The oxygen sensor is unique amongthe engine control sensors because is acts like a battery and is able to generate its own low voltage signal. It is located the exhaust system and monitors the amount of oxygen in the exhaust stream and provides feedback to the Engine Control Module (ECM).


The electrically heated oxygen sensor warms up quickly and remains hot, even at idle when the exhaust manifold may cool down.


The ECM applies a reference voltage of 450 mv to the oxygen sensor, the ECM compares this reference voltage with the voltage generated by oxygen sensor. The amount of voltage the oxygen sensor generates is proportionate to the difference between the amount of oxygen in the outside air and the exhaust gases. The atmosphere contains about 21% oxygen. The exhaust from a rich air/fuel ratio contains almost no oxygen. With a large difference betweenthe amounts of oxygen containing the two surface, the sensor generates less voltage.


When the exhaust gas is rich (below 14.7:1), the voltage output is high, above 450 mv. When the exhaust gas is lean (above 14.7:1 air/fuel ratio), the sensor's voltage output is low, below 450 mv.

The ECM uses oxygen sensor information for:

- Open loop / closed loop criteria
- Ideal air / fuel ratio

Failure Code	Description	Trouble Area	Maintenance Hint
80	Oxygen sensor high voltage	When recognition the output that more than nominal threshold, malfunction of sensing voltage.	 Monitoring the actual output signal through scan tool Inspection the ECM pin 16, 17 about short circuit or open with bad contact
89	Oxygen sensor low voltage	When recognition the output that more than nominal threshold, malfunction of sensing voltage.	 Inspection the oxygen sensor Inspection the ECM
82	Oxygen sensor no activity detected	When recognition the output that not active the sensor etc.	
83	Oxygen sensor not lean after overrun fuel shut-off	When recognition the output that no lean signal after overrun fuel shut-off	
84	Oxygen sensor slow response	When slow response of sensor signal	
85	Oxygen sensor heater failure	When recognition the heating circuit	Monitoring the heating status through scan tool
86	Oxygen sensor heater short circuit to battery	When recognition the heating currents that more or less than set values (less than 0.2 A or more than 2 A)	 Inspection the ECM pin 9 about short circuit or open with bad contact Inspection the heating power source
87	Oxygen sensor heater short circuit to ground or open	When recognition the heating voltages than less than set values (less than 2 v)	Inspection the heating circuit of oxygen sensorInspection the ECM

Failure Code	Description	Trouble Area	Maintenance Hint
81	Bank 1 system short term fuel trim adaptation below lean threshold	When recognition the value less than nominal control threshold, it means that when big deviation in control range of adaptation values through fuel and air mixture formation	 Inspection the intake air leakage Inspection the injection quantities with injector block or leakage Inspection the exhaust leakage Inspection the ECM
93	Bank 1 system short term fuel trim adaptation above rich threshold	When recognition the value more than nominal control threshold, it means that when big deviation in control range of adaptation values through fuel and air mixture formation	
96	Bank 1 system short term fuel trim at rich stop	When recognition the short term fuel trim that more than nominal threshold	
97	Bank 1 system short term fuel trim at lean stop	When recognition the short term fuel trim that less than nominal threshold	
98	Bank 1 system idle adaptationfailure (above rich threshold)	When recognition the long term fuel trim exceeds rich threshold	
99	Bank 1 system idle adaptation failure (below rich threshold)	When recognition the long term fuel trim exceeds lean threshold	
100	Bank 1 system learning control failure (rich, low load)	When recognition the long term fuel trim exceeds rich threshold	
101	Bank 1 system learning control failure (lean, low load)	When recognition the long term fuel trim exceeds lean threshold	
102	Bank 1 system learning control failure (rich, high load)	When recognition the long term fuel trim exceeds rich threshold	
103	Bank 1 system learning control failure (rich, low load)	When recognition the long term fuel trim exceeds lean threshold	

Circuit Description

In order to control emissions, a catalytic converter is used to covert harmful emissions into harmless water vapor and carbon dioxide. The ECM has the ability to monitor this process by using a oxygen sensor. The oxygen sensor produces and output signal which indicates the storage capacity of the catalyst. This in turn indicates the catalyst's ability to convert exhaust emission effectively. If the oxygen sensor pigtail wiring, connector, or terminal is damaged. Do not attempt to repair the wiring, connector, or terminals. In order for the sensor to function properly, it must have a clean air reference provided to it. This clean air reference is obtained by way of the oxygen sensor wire(s). Any attempt to repair the wires, connector, or terminal and degrade the oxygen sensor performance.

Oxygen Sensor Signal Voltage Inspection

- 1. Maintain the engine speed is at idle while the coolant temperature is over 80°C.
- 2. Measure the oxygen sensor signal voltage between the ECM terminal No. 16 and No. 17.

Specified Value	0.2 ~ 1.0 V
-----------------	-------------

Notice: If the measured value is not within the specified value, the possible causemay bein cable, oxygen sensor or ECM

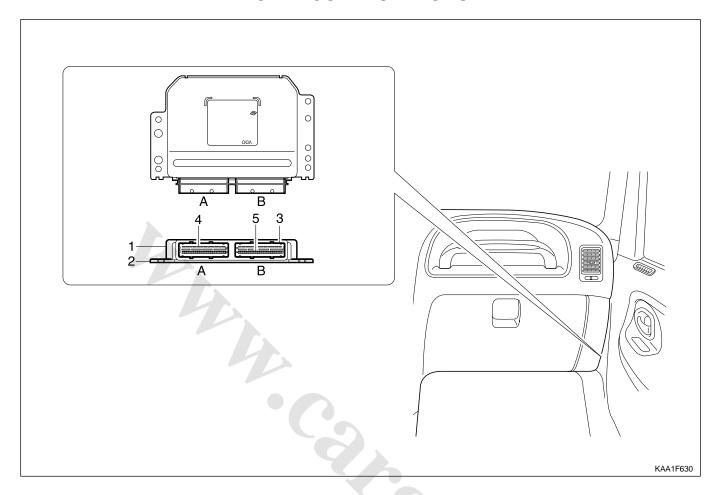
Oxygen Sensor Heating Voltage Inspection

- 1. Maintain the engine speed is at idle while the coolant temperature is over 80° C.
- 2. Measure the oxygen sensor signal voltage between the ECM terminal No. 11 and No. 9.

Specified Value	11 ~ 14 V
-----------------	-----------

Notice: If the measured value is not within the specified value, the possible cause may be in cable, oxygen sensor or ECM

Oxygen sensor Heating Current Consumption Inspection


- 1. Turn the ignition switch to "ON" position.
- 2. Measure the oxygen sensor heating current consumption between the ECM terminal No. 9 and No. 5.

Specified Value	0.2 ~ 2.0 V	7
-----------------	-------------	---

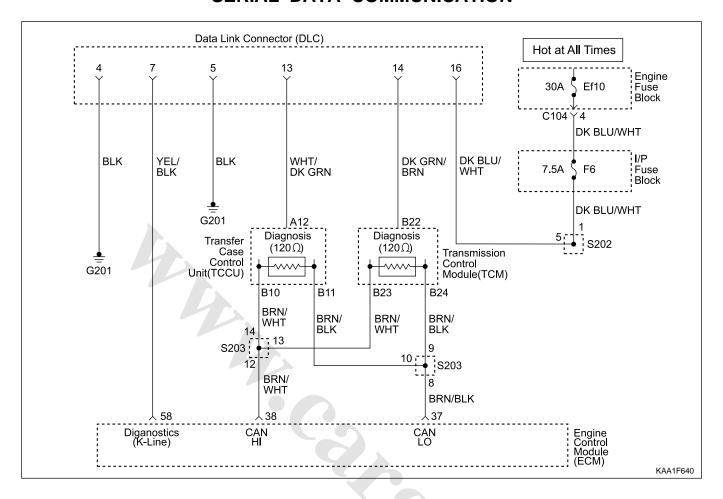
Notice: If the measured value is not within the specified value, the possible cause may be in cable, oxygen sensor or ECM

ENGINE CONTROL MODULE

- 1 Cover
- 2 Plate
- 3 Connector
- 4 Plat Pin

Vehicle Side : No. 1-12 Engine Side : No. 61-72 5 Pin

Vehicle Side: No. 13-60 Engine Side: No. 73-120 A Vehicle Side Connector: Black B Engine Side Connector: Gray


The Engine Control Module (ECM), located inside the right side kick panel, is the control center of the fuel injection system. It constantly looks at the information fromvarious sensors and controls the systems that affect the vehicle's performance. Engine rpm and air mass are used to measure the air intake quantity resulting in fuel injection metering. The ECM also performs the diagnostic functions of the system. It can recognize operational problems, store failure code(s) which identify the problem areas to aid the technician in making repairs.

There are no serviceable parts in the ECM. The calibrations are stored in the ECM in the Programmable Read Only Memory (PROM).

The ECM supplies either 5 or 12 volts to power the sensors or switches. This is done through resistance in the ECM which are so high in value that a test light will not come ON when connected to the circuit. In some cases, even an ordinary shop voltmeter will not give and accurate reading because its resistance is too low. You must use a digital voltmeter with a 10 Mohm input impedance to get accurate voltage readings. The ECM controls output circuits such as the ignition coils, the fuel injectors, the fuel pump relay, the camshaft actuator, the canister purge valve, etc., by controlling the ground circuit.

SERIAL DATA COMMUNICATION

Failure Code	Description	Trouble Area	Maintenance Hint
23	CAN communication failure: ASR/MSR	When CAN signal message missing or implausibility for ASR/MSR unit or not initialized condition	 Inspection the ASR unit with CAN connection Inspection the Engine Control Module (ECM) pin 38, 37 about short circuit or open with bad contact Inspection the ECM
24	CAN communication failure: ABS	When CAN signal message missing or implausibility for ABS unit or not initialized condition	 Inspection the ABS unit with CAN connection Inspection the ECM pin 38, 37 about short circuit or open with bad contact Inspection the ECM
26	CAN communication failure: TCU (A/T only)	When CAN signal message missing or implausibility for TCU unit or not initialized condition	 Inspection the TCM unit with CAN connection Inspection the ECM pin 38, 37 about short circuit or open with bad contact Inspection the ECM

Failure Code	Description	Trouble Area	Maintenance Hint
29	CAN communication failure: ID 200h not plausible	When CAN signal message missing or implausibility for ABS/ABD unit or not initialized condition	 Inspection the ABS/ABD unit with CAN connection Inspection the ECM pin 38, 37 about short circuit or open with bad contact Inspection the ECM
30	CAN communication failure: ID 208h not plausible	When CAN signal message missing or implausibility for ABS/ABD unit or not initialized condition	 Inspection the ABS/ABD unit with CAN connection Inspection the ECM pin 38, 37 about short circuit or open with bad contact Inspection the ECM
31	CAN communication failure: communication initialization failure	When CAN signal message missing or implausibility for each unit (ABS, ASR, TCM, TOD etc.) or not initialized condition	 Inspection the each control unit with CAN connection Inspection the ECM pin 38, 37 about short circuit or open with bad contact Inspection the ECM
59	CAN communication failure: MSR data transmission not plausible	When CAN signal message missing or implausibility for MSR unit or not initialized condition	 Inspection the MSR unit with CAN connection Inspection the Engine Control Module (ECM) pin 38, 37 about short circuit or open with bad contact Inspection the ECM
60	CAN communication failure: ASR data transmission not plausible	When CAN signal message missing or implausibility for ASR unit or not initialized condition	 Inspection the ASR unit with CAN connection Inspection the Engine Control Module (ECM) pin 38, 37 about short circuit or open with bad contact Inspection the ECM

Circuit Description

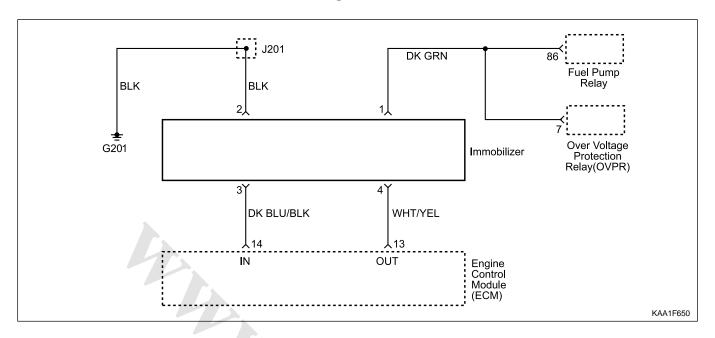
The provision for communicating with the ECM is the Data Link Connector (DLC). It is located in the instrument panel fuse block. The DLC is used to connect the scan tool. Battery power and ground is supplied for the scan tool through the DLC. CAN line is used to communicate with the other module such as the Transmission Control Module (TCM) and Transfer Case Control Unit (TCCU).

Keyword 2000 Serial Data Communications

Each bit of information can have one of two lengths: long or short. This allows vehicle wiring to be reduced by transmitting and receiving multiple signals over a singles wire. The message carried on KWP 2000 data streams are also prioritized. If two messages attempt to establish communications on the data line at the same time, only the message with higher priority will must wait.

INTERNAL FAILURE

Failure Code	Description	Trouble Area	Maintenance Hint
	Transmission coding failure	When faulty of variant coding of transmission	Inspection the coding condition through scan tool
21			InspectiontheEngine ControlModule (ECM)
			Inspection the CAN line
			Inspection the TCM
136	ECM failure (RAM)	When malfunction of random access memory - ECM internal error	Inspection the ECM
142	Uncoded/ unprogramed ECM	When malfunction of ECM coding-required ECM encoding	Fulfill the ECM variant coding
137	ECM failure (EPROM)	When malfunction of ECM	Inspection the ECM
143	ECM failure (EEPROM/ Flash-EPPOM checksum failure)	internal	
144	ECM failure (coding ID checksum failure)		
145	ECM failure (coding checksum failure)	.0	
146	ECM failure (program- ming checksum failure)		

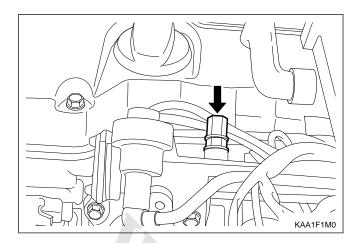


ELECTRONIC THROTTLE CONTROLLER SAFETY MALFUNCTION

Failure Code	Description	Trouble Area	Maintenance Hint
110	Throttle actuator learning data fault	System internal failure	Inspection the Engine Control Module (ECM)
117	Exceed fuel-cut safety time		
120	Cruise control interruption memory failure		
138	Call Monitoring		
139	Servo motor control output interruption memory failure		
140	Servo motor open/short		
186	ECM failure (incompatible CPU)		
187	ECM failure (CPUs communication failure)	L	
188	ECM failure (CPU 2 configuration failure)		
189	ECM failure (CPU 2 fault)		
190	ECM failure (CPU run time failure between CPUs)		
231	ECM failure (CPU 2 cruise control message counter failure)		
232	Over deceleration limit (CPU 2)		
233	Over acceleration limit (CPU 2)		
234	Cruise control lever dual operation (CPU 2)		
235	Cruise control lever safety terminal failure (CPU 2)		
236	Unusual pedal position variation (CPU 2)		
237	Unusual throttle position variation (CPU 2)		
238	Unusual throttle controller monitoring data comparison fault (CPU 2)		

Failure Code	Description	Trouble Area	Maintenance Hint
239	Unusual accelerator pedal position sensor comparison fault (CPU 2)	System internal failure	Inspection the Engine Control Module (ECM)
240	Throttle potentiometer comparison fault (CPU 2)		
241	Unusual CPU communication (CPU 2)		
242	Unusual CPU configuration (CPU 2)		
243	A/D converter failure (CPU 2)		
244	Accelerator pedal position sensor setpoint fault between CPU 1 and CPU 2		
245	Position controller setpoint fault between CPU 1 and CPU 2		
246	MSR setpoint fault between CPU 1 and CPU 2		
247	Idle control setpoint fault between CPU 1 and CPU 2	8	
248	A/D converter overflow (CPU 2)	(O.	
249	ROM fault (CPU 2)		
250	RAM fault (CPU 2)		- (O)
251	Cycle monitor fault (CPU 2)		

IMMOBILIZER


Failure Code	Description	Trouble Area	Maintenance Hint
	Communication with transponder missing	When missing the transponder signal	Inspection the Engine Control Module (ECM) pin 13, 14 about short circuit or open with bad contact
25			Inspection the power source or ground short circuit or open of immobilizer unit
			 Inspection the transponder condition (broken etc.)
			Inspection the ECM
	Unprogramed ECM with immobilizer	When malfunction of immobilizer	Fulfill the immobilizer pairing
141		Required immobilizer encoding, no paired condition of immobilizer even through start trial	

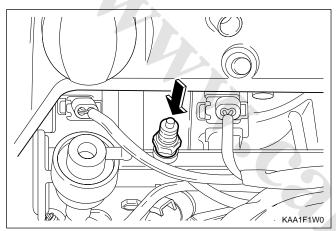
Circuit Description

Immobilizer is a device disabling vehicle ignition unless a specific key is used and designed to help prevent vehicle theft.

Immobilizer is comprised of two devices, a key with encoded transponder and ECM with the same encoding of the transponder. When a key is inserted into the hole to start vehicle and turned to ON, the ECM reads and decodes the transponder code and, if the same, starts the engine, it is called immobilizer. It means immobilizer system disables starting by stopping fuel supply if the code in the transponder does not match the code stored in ECM each other.

MAINTENANCE AND REPAIR

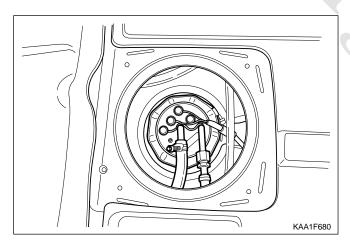
ON-VEHICLE SERVICE


DISCHARGING THE PRESSURE IN FUEL SYSTEM

Removal and Installation Procedure

1. Remove the fuel pressure test connector.

Installation Notice


Tightening Torque	25 N•m (18 lb-ft)

2. Remove the fuel pressure in fuel systemby pressing the service valve with a clean, pointy tool.

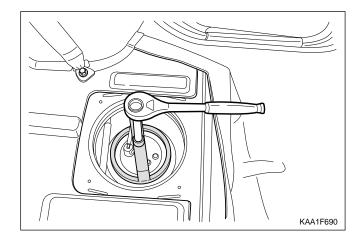
Notice: Place a cloth so that the fuel doesn't stain around.

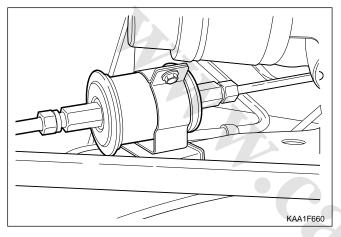
Installation should follow the removal procedure in the reverse order.

FUEL PUMP

Tools Required

661 589 00 46 00


Fuel Tank Cap Wrench


Removal and Installation Procedure

Caution: The fuel system is under pressure. To avoid fuel spillage and the risk of personal injury or fire, it is necessary to relieve the fuel system pressure before disconnecting the fuel lines.

- Relieve the fuel system pressure. Refer to "Discharging the Pressure in Fuel System" in this section.
- 2. Disconnect the negative battery cable.
- 3. Put aside the floor carpet to remove the fuel pump access cover.
- 4. Remove the fuel pump access cover.
- 5. Remove the fuel pump wiring connectors.
- 6. Disconnect the fuel supply and return pipes.
- 7. Remove the fuel pump locking cap band.

1F2-96 M161 ENGINE CONTROLS www.CarGeek.ir

- 8. Using the fuel tank cap wrench 661 589 00 46 00, remove the locking cap.
- 9. Remove the pump from the fuel tank.

Notice: Check the condition of the seal and replace if necessary. Drain the fuel before removing the pump.

- 10. Perform an operational check of the fuel pump.
- 11. Installation should follow the removal procedure in the reverse order.

FUEL FILTER

Removal and Installation Procedure

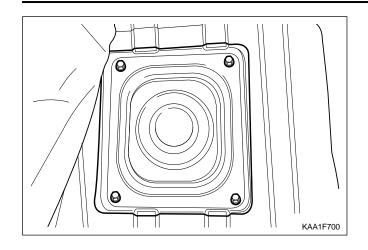
1. Disconnect the negative battery cable.

Caution: The fuel system is under pressure. To avoid fuel spillage and the risk of personal injury or fire, it is necessary to relieve the fuel system pressure before disconnecting the fuel lines.

- 2. Relieve the fuel system pressure. Refer to "Discharging the Pressure in Fuel System" in this section.
- 3. Disconnect the fuel lines from the fuel filter.

Installation Notice

Tightening Torque	28 N•m (21 lb-ft)

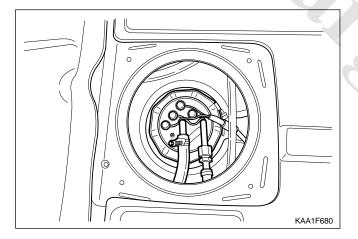

4. Remove the fuel filter mounting bracket bolt .

Installation Notice

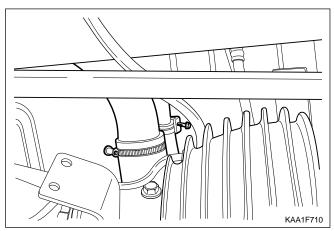
Tightening Torque	6 N•m (53 lb-in)
-------------------	------------------

Notice: Place the fuel pump pad. There may be acorrosion due to the contact between the fuel filter and the bracket.

- 5. Remove the fuel filter.
- 6. Install the fuel filter.
- 7. Perform a leak test of the fuel filter.
- 8. Installation should follow the removal procedure in the reverse order.



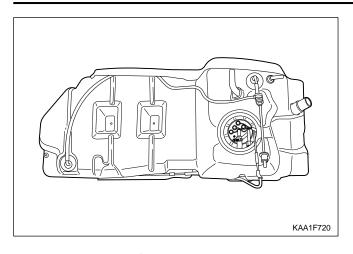
FUEL TANK


Removal and Installation Procedure

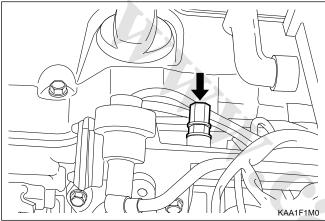
Caution: The fuel system is under pressure. To avoid fuel spillage and the risk of personal injury or fire, it is necessary to relieve the fuel system pressure before disconnecting the fuel lines.

- 1. Relieve the fuel pressure. Refer to "Discharging the Pressure in Fuel System" in this section.
- 2. Disconnect the negative battery cable.
- 3. Drain the fuel tank.
- 4. Put aside the floor carpet to remove the fuel pump access cover.
- 5. Remove the fuel pump access cover.

- 6. Disconnect the return line.
- 7. Disconnect the supply line.
- 8. Disconnect the fuel tank-to-canister hose from the fuel tank.
- 9. Disconnect the fuel pump wiring connector.



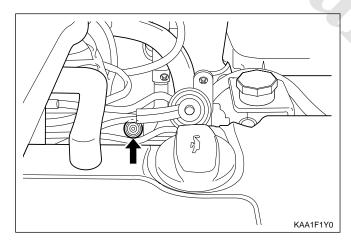
- 10. Disconnect the fuel filler hose and air vent hose from the fuel tank.
- 11. Support the fuel tank.
- 12. Remove the fuel tank retaining nuts.


Installation Notice

Tightening Torque	38 N•m (28 lb-ft)

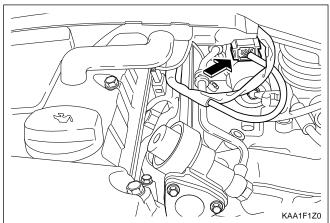
13. Carefully lower the fuel tank.

- 14. Turn the rollover valves counterclockwise at an angle of 90 degrees.
- 15. Turn the lock ring counterclockwise.
- 16. Remove and discard the gasket.
- 17. Installation should follow the removal procedure in the reverse order.

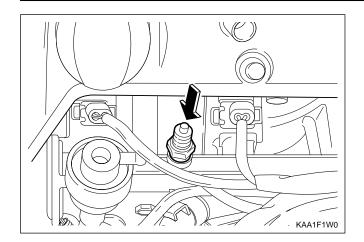

FUEL PRESSURE REGULATOR

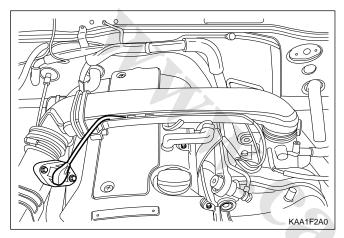
Removal and Installation Procedure

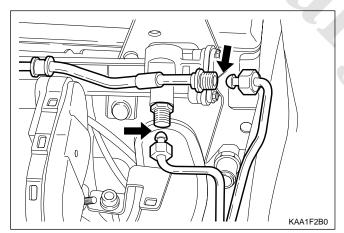
- 1. Disconnect the negative battery cable.
- 2. Remove the fuel pressure test connector.

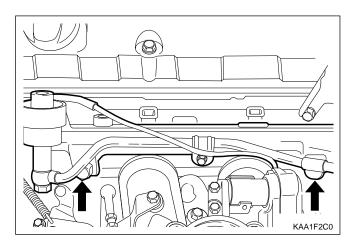

Installation Notice

Tightening Torque	25 N•m (18 lb-ft)
-------------------	-------------------




Caution: The fuel system is under pressure. To avoid fuel spillage and the risk of personal injury or fire, it is necessary to relieve the fuel system pressure before disconnecting the fuel lines.


3. Relieve the fuel pressure in fuel supply systemby pressing the service valve.



- 4. Disconnect the vacuum hose.
- 5. Disconnect the circlip and remove the fuel pressure regulator.
- 6. Apply the oil to O-ring lightly and then replace it.
- 7. Perform a leak test of the fuel pressure regulator with the engine off and the ignition on.
- 8. Installation should follow the removal procedure in the reverse order.

FUEL RAIL AND INJECTORS

Removal and Installation Procedure

Caution: The fuel system is under pressure. To avoid fuel spillage and the risk of personal injury or fire, it is necessary to relieve the fuel system pressure before disconnecting the fuel lines.

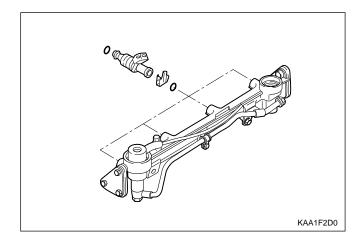
- 1. Discharge the fuel pressure from the fuel pressure test connector.
- 2. Disconnect the negative battery cable.
- 3. Disconnect the vacuumhose from the fuel pressure regulator.
- 4. Remove the cable guide.
- Disconnect the Hot Film Air Mass (HFM) sensor connector.
- 6. Remove the intake air duct mounting bolts.

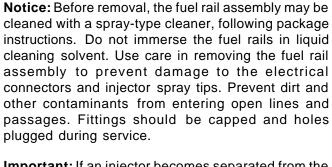
Installation Notice

Tightening Torque	9 N•m (80 lb-in)
-------------------	------------------

- 7. Remove the intake air duct clamps.
- 8. Remove the intake air duct.
- 9. Remove the fuel return and supply line.

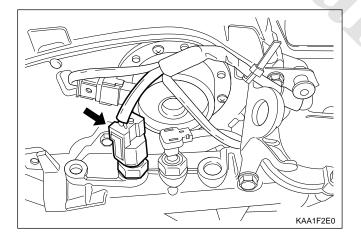
Notice: For removal, cover around parts with cloths not to be stained by fuel. In case of checking the injector only, do not remove the fuel return and supply line.


Installation Notice


Tightening Torque	23 N•m (17 lb-ft)

- 10. Remove the six injector connectors.
- 11. Remove the two left and two right bolts and one center bolt of the fuel rail assembly from the intake manifold.

Installation Notice


Tightening Torque	25 N•m (18 lb-ft)

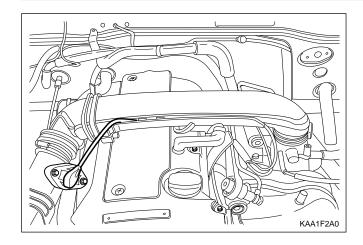
Important: If an injector becomes separated from the rail and remains in the cylinder head, replace the injector O-ring seals and the retaining clip.

- 12. Remove the injectors and the fuel rail carefully.
- 13. Remove the fuel injector retainer clips.
- Remove the fuel injectors by pulling them down and out.
- 15. Discard the fuel injector O-rings.
- 16. Lubricate the new fuel injector O-rings with engine oil. Install the new O-rings on the fuel injectors.
- 17. Perform a leak check of the fuel rail and fuel injectors.
- 18. Installation should follow the removal procedure in the reverse order.

ENGINE COOLANT TEMPERATURE SENSOR

Removal and Installation Procedure

- 1. Relieve the coolant system pressure.
- 2. Disconnect the negative battery cable.
- 3. Disconnect the engine coolant temperature sensor connector.


Notice: Take care when handling the engine coolant temperature sensor. Damage to the sensor will affect the proper operation of the fuel injection system.

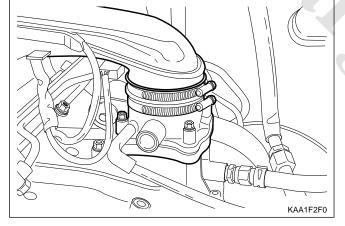
4. Remove the engine coolant temperature sensor from the pump hosing.

Installation Notice

Tightening Torque	30 N•m (22 lb-ft)

5. Installation should follow the removal procedure in the reverse order.

THROTTLE BODY (INTEGRATED WITH THE ACTUATOR)

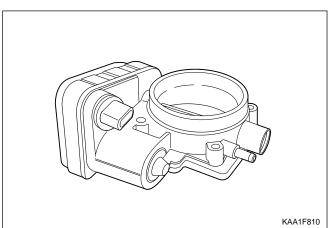

Removal and Installation Procedure

- 1. Disconnect the negative battery cable.
- 2. Disconnect the mass air flow sensor connector.
- 3. Disconnect the mass air flow sensor from the air filter housing.
- 4. Remove the intake air duct mounting bolts.

Installation Notice

Tightening Torque	9 N•m (80 lb-in)
-------------------	------------------

- 5. Remove the air inlet housing clamps.
- 6. Remove the inlet air housing.

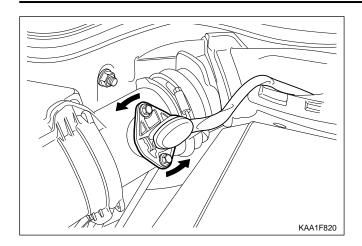


- 7. Disconnect the throttle body electrical connector.
- 8. Remove the throttle body bolts.

Installation Notice

Tightening Torque	12 N•m (106 lb-in)
-------------------	--------------------

9. Remove the vacuum hose.

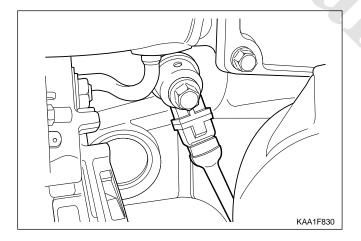


10. Remove the throttle body and discard the gasket.

Important: Use care in cleaning old gasket material. Sharp tools may damage sealing surfaces.

11. Installation should follow the removal procedure in the reverse order.

SSANGYONG MY2002


HOT FILM AIR MASS (HFM) SENSOR

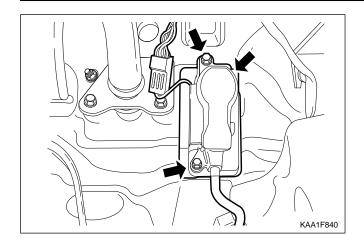
Removal and Installation Procedure

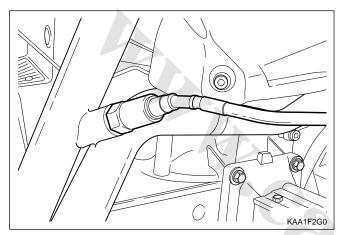
- 1. Disconnect the negative battery cable.
- Disconnect the Hot Film Air Mass (HFM) sensor electrical connector.
- 3. Remove the HFM sensor retaining screws.
- 4. Turn the HFM sensor coupling in the direction shown in the figure in the left so that it gets separated from the contact surface.

Notice: Make sure the HFM sensor coupling connects completely with the contact surface installation.

- 5. Remove the HFM sensor.
- 6. Installation should follow the removal procedure in the reverse order.

KNOCK SENSOR


Removal and installation Procedure


- 1. Disconnect the negative battery cable.
- 2. Disconnect the knock sensor electrical connector from the intake manifold bracket.
- 3. Remove the knock sensor mounting bolt from the knock sensor installed on the cylinder block.

Installation Notice

Tightening Torque	25 N•m (18 lb-ft)
rightoning rolquo	2011111 (101011)

- 4. Remove the knock sensor.
- 5. Installation should follow the removal procedure in the reverse order.

PEDAL POSITION SENSOR

Removal and Installation Procedure

- 1. Disconnect the negative battery cable.
- 2. Disconnect the pedal position sensor connector.
- 3. Unscrew the bolts and nut.

Installation Notice

Tightening Torque 6 N•m (53 lb-in)

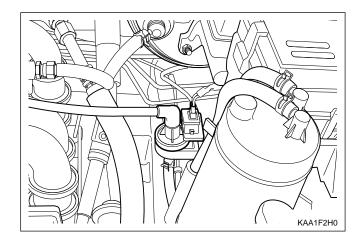
- 4. Remove the pedal and sensor assembly.
- 5. Installation should follow the removal procedure in the reverse order.

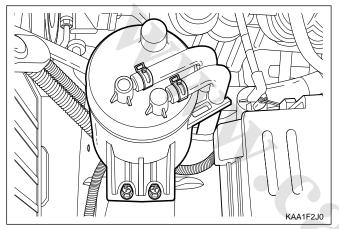
OXYGEN SENSOR

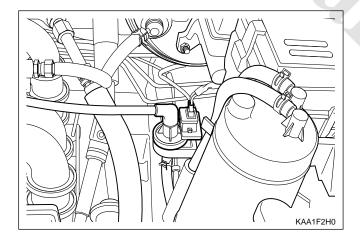
Removal and Installation Procedure

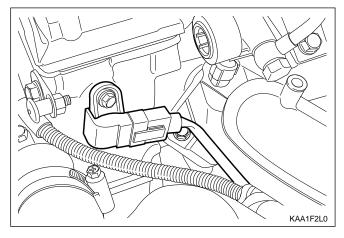
1. Disconnect the negative battery cable.

Notice: The oxygen sensor uses a permanently attached pigtail and connector. This pigtail should not be removed from the oxygen sensor. Damage or removal of the pigtail or the connector could affect proper operation of the oxygen sensor. Do not drop the oxygen sensor.


- 2. Disconnect the electrical connector.
- 3. Carefully remove the oxygen sensor from the exhaust pipe.


Installation Notice


Tightening Torque	55 N•m (41 lb-ft)
rigittorining rollquo	00 11 111 (11 10 11)


Important: A special anti-seize compound is used on the oxygen sensor threads. This compound consists of aliquid graphiteand glass beads. The graphite will burn away, but the glass beads will remain, making the sensor easier to remove. New or serviced sensors will already have the compound applied to the threads. If a sensor is removed from any engine and is to be reinstalled, the threads must havean antiseize compound applied before reinstallation.

- 4. Coat the threads of the oxygen sensor with an antiseize compound, if needed.
- 5. Installation should follow the removal procedure in the reverse order.

PURGE CONTROL VALVE

Removal and Installation Procedure

- 1. Disconnect the negative battery cable.
- 2. Disconnect the purge control valve connector.
- 3. Disconnect the throttle body-to-purge control valve hose from the purge control valve.
- 4. Disconnect the canister-to-purge control valve hose from the purge control valve.
- 5. Remove the purge control valve.
- 6. Installation should follow the removal provedure in the reverse order.

CANISTER

Removal and Installation Procedure

Caution: Canister and vacuum hoses contain fuel vapors. Do not smoke in the area or permit an open flame.

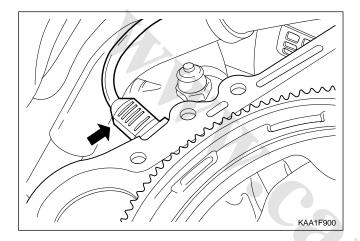
- 1. Disconnect the fuel tank-to-canister hose form the canister.
- 2. Disconnect the canister-to-purge control valve hose form the canister.
- 3. Remove the canister mounting bolts.

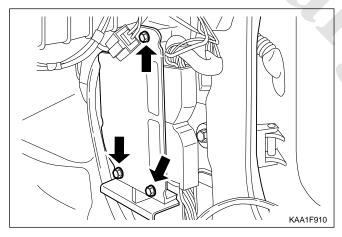
Installation Notice

Tightening Torque	6 N•m (53 lb-in)

- 4. Remove the canister.
- 5. Installation should follow the removal procedure in the reverse order.

CAMSHAFT POSITION SENSOR


Removal and Installation Procedure


- 1. Disconnect the negative battery cable.
- 2. Disconnect the electrical connector from the camshaft position sensor.
- 3. Remove the camshaft position sensor retaining bolt.

Installation Notice

Tightening Torque 10	N•m (89 lb-in)
----------------------	----------------

- 4. Check the O-ring for damage and replace it if necessary.
- 5. Installation should follow the removal procedure in the reverse order.

CRANKSHAFT POSITION SENSOR

Removal and installation Procedure

- 1. Disconnect the negative battery cable.
- 2. Disconnect the electrical connector at the crankshaft position sensor.
- 3. Remove the crankshaft position sensor retaining bolt.

Installation Notice

Tightening Torque	10 N•m (89 lb-in)
-------------------	-------------------

4. Installation should follow the removal procedure in the reverse order.

ENGINE CONTROL MODULE

Removal and installation Procedure

- 1. Disconnect the negative battery cable.
- 2. Remove the cowl side trim form passenger side. Re-er to *Section 9G, Interior trim.*
- 3. Remove the four securing nuts for the Engine Control Module (ECM) from the mounting bracket.

Installation Notice

- 4. Pull out the ECM from the bracket.
- 5. Disconnect the vehicle side coupling.
- 6. Installation should follow the removal procedure in the reverse order.

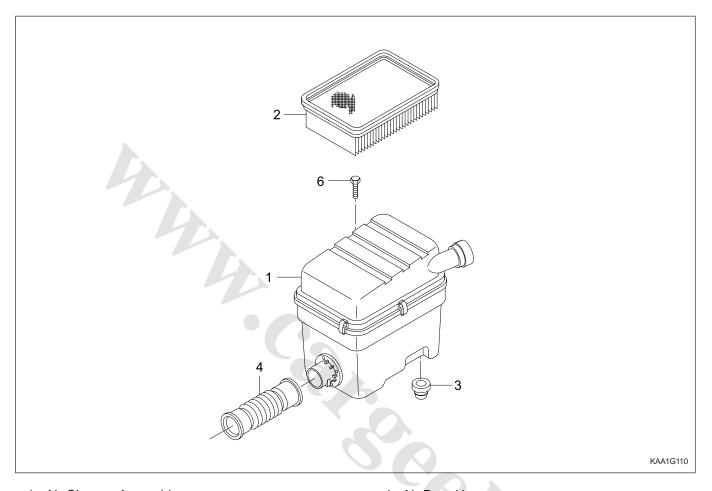
SECTION 1G2

M161 ENGINE INTAKE & EXHAUST

CAUTION: Disconnect the negative battery cable before removing or installing any electrical unit or when a tool or equipment could easily come in contact with exposed electrical terminals. Disconnecting this cable will help prevent personal injury and damage to the vehicle. The ignition must also be in LOCK unless otherwise noted.

TABLE OF CONTENTS

Specifications1G2-2	Air Intake Shield1G2-5
Fastener Tightening Specifications 1G2-2	Intake Air Duct1G2-6
Maintenance and Repair1G2-3	Intake Manifold1G2-8
On-Vehicle Service	Exhaust Manifold1G2-10
Air Cleaner1G2-3	Removal and Installation of Exhaust System 1G2-12


SPECIFICATIONS

FASTENER TIGHTENING SPECIFICATIONS

Application	N•m	Lb-Ft	Lb-In
Air Cleaner Mounting Bolt	15 - 20	11 - 14.7	-
Connection Piece	36 - 44	27 - 33	-
Exhaust Manifold Nuts	31.5 - 38.5	23.2 - 28.4	-
Exhaust Pipe Flange Bolts	15 - 28	11 - 21	-
Exhaust Pipe-To-Catalytic Converter Flange Nuts	28 - 47	21 - 35	-
Front Muffler Pipe-To-Catalytic Converter Flange Nuts	28 - 47	21 - 35	-
Idle Regulator and Intermediate Flange Bolts	22.5 - 27.5	16.6 - 20.3	-
Intake Manifold Mounting Bolts	22.5 - 27.5	16.6 - 20.3	-
Oxygen Sensor	55	41	-
Rear Muffler Pipe Flange-To-Front Muffler Pipe Flange Nuts	28 - 47	21 - 35	-
Supporting Assembly Bolts	22.5 - 27.5	16.6 - 20.3	-

MAINTENANCE AND REPAIR ON-VEHICLE SERVICE

AIR CLEANER

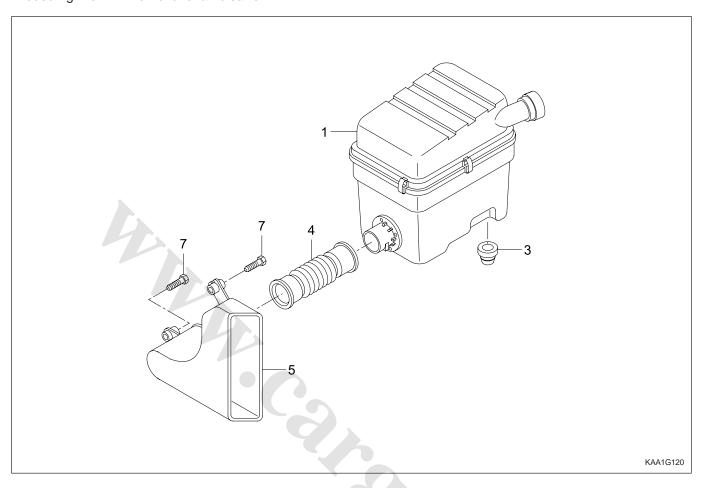
- 1 Air Cleaner Assembly
- 2 Element Assembly
- 3 Insulator

- 4 Air Duct Hose
- 6 Bolt (M8 x 30) 15 20 N•m

Removal and Installation Procedure

- 1. Disconnect the HFM sensor and the air cleaner by prying up the clamp.
- 2. Remove the air cleaner mounting bolt.

Installation Notice

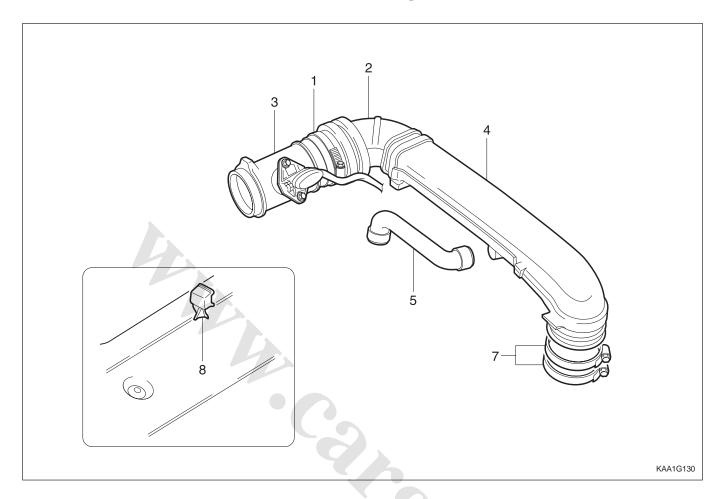

15 - 20 N•m (16.6 - 20.3 lb-ft)

Remove air intake shield upper cover, and then remove the air cleaner from rubber bearing on bracket.

Notice: For installation, exactly seat the air cleaner into the rubber bearing.

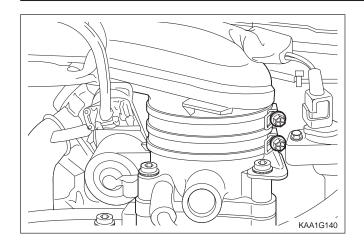
AIR INTAKE SHIELD

Preceding Work: Removal of air cleaner


- 1 Air Cleaner Assembly
- 3 Insulator
- 4 Air Duct Hose

- 5 Air Inlet Duct
- 7 Bolt (M6 x 35) 7 11 N•m

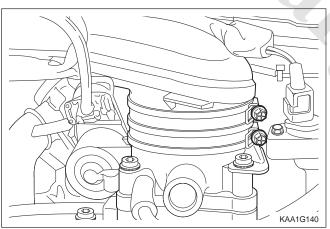
Removal & Installation Procedure


- 1. Remove the upper cover (3) from the air intake shield (5) upper mounting pin.
- 2. Remove the bolts (4 and 6).
- 3. Remove the air intake shield (5).
- 4. Installation should follow the removal procedure in the reverse order.

INTAKE AIR DUCT


- 1 Clamp
- 2 Sleeve
- 3 HFM Sensor
- 4 Intake Air Duct

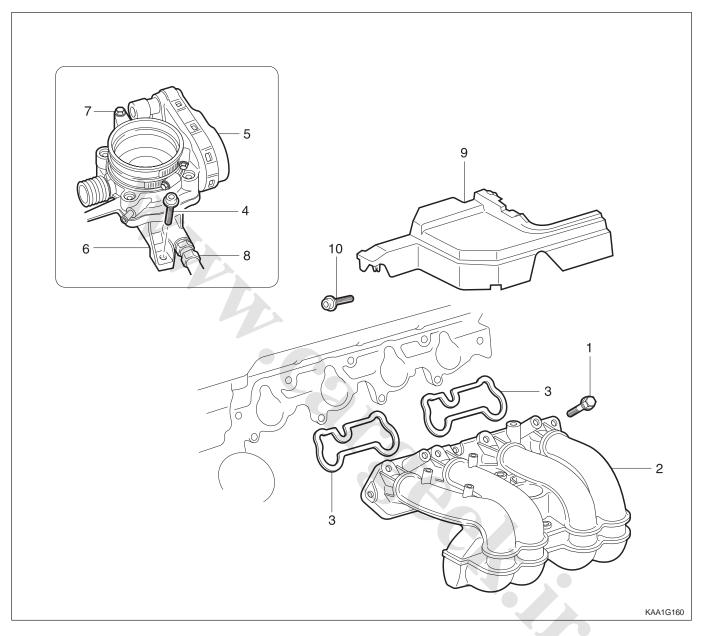
- 5 Blow-byHose
- 7 Clamp(2 pieces)
- 8 Intake Air Duct Mounting Bracket



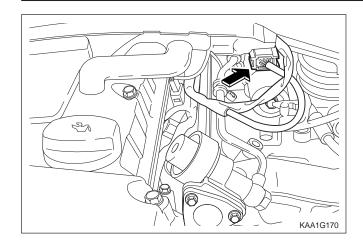
Removal & Installation Procedure

1. Release the clamp (1) and intake air duct.

2. Remove the Blow-by hose (5) (arrow).

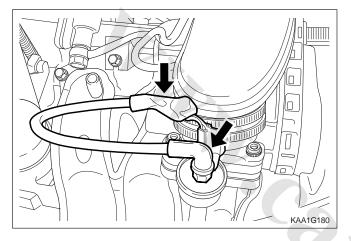

3. Release the clamp (7) and remove the intake air

Notice: Completely fit the intake air duct with themounting bracket (8).


INTAKE MANIFOLD

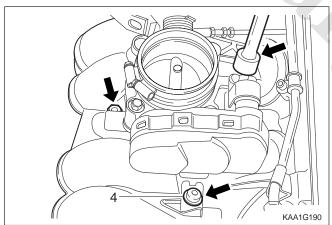
Preceding Work: Removal of intake air duct

Removal of fuel distributor and injector valve



- Bolt (M6 X 40, 6 pieces)
 22.5 27.5 N•m (16.6 20.3 lb-ft)
 Intake Manifold
 Gasket (2 pieces)
 Bolt (M8 X 40, 3 pieces)
 25 27.5 N•m (16.6 20.3 lb-ft)
- 5 Idle Regulator
- 6 Intermediate Flange
- 7 Bolt (M6 X 35, 4 pieces)
 - 9 11 N•m (80 97 lb-in)

Removal & Installation Procedure


- 1. Disconnect the battery ground cable.
- 2. Remove idle speed control plug connector (arrow).

- Disconnect the brake booster vacuum line and other vacuum lines.
- 4. Disconnect the rod from bearing bracket assembly and remove the connection piece.

Installation Notice

Tightening Torque	36 - 44 N•m
rigitterining rorque	(27 - 33 lb-ft)

5. Unscrew the three bolts (4) and remove the idle regulator and intermediate flange.

Installation Notice

Tightening Torque	22.5 - 27.5 N•m (16.6 - 20.3 lb-ft)
-------------------	--

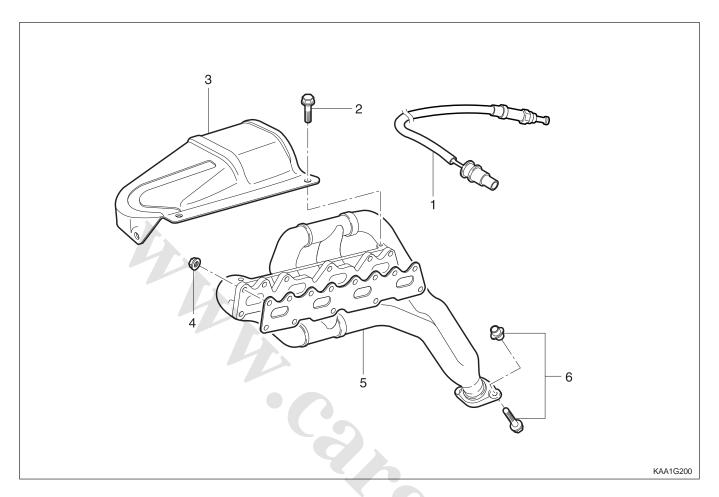
6. Unscrew the two bolts (M8 X 16) and remove the support assembly.

Installation Notice

Tightening Torque	22.5 - 27.5 N•m (16.6 - 20.3 lb-ft)
	(

7. Unscrew the intake manifold mounting bolts (1) and remove the intake manifold and gasket.

Installation Notice


Tightening Torque	22.5 - 27.5 N•m (16.6 - 20.3 lb-ft)
-------------------	--

Notice: Replace the gasket with new one.

- 8. Installation should follow the removal procedure in the reverse order.
- 9. Start the engine and check for leaks in each connection.

SSANGYONG MY2002

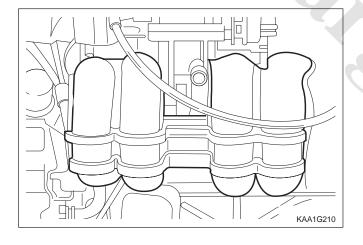
EXHAUST MANIFOLD

- 1 Oxygen Sensor 55 N•m (41 lb-ft) 2 Bolt (4 pieces) 9 - 11 N•m (80 - 97 lb-in) 3 Upper Cover 4 Nut (11 pieces)
- 31.5 38.5 N•m (23.2 28.4 lb-ft)
- 5 Exhaust Manifold 6 Flange Bolt & Exhaust Pipe Mounting Nut 30 N•m (22 lb-ft) 7 Gasket...... Replace

Removal & Installation Procedure

1. Remove the oxygen sensor if necessary.

Installation Notice

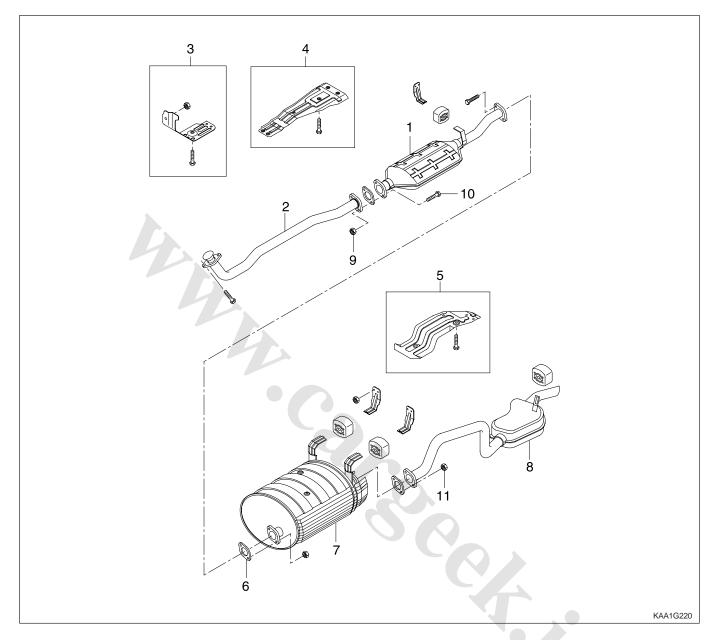

Tightening Torque	55 N•m (41 lb-ft)

- 2. Unscrew the bolt and remove the exhaust manifold upper cover.
- 3. Unscrew the flange bolt of front exhaust pipe and separate the front exhaust pipe.

Installation Notice

Tightening Torque	15 - 28 N•m (11 - 21 lb-ft)
-------------------	--------------------------------

Notice: Check the exhaust pipe mounting nut, and replace it with new one if necessary.


4. Unscrew the eleven nuts and remove the exhaust manifold and gasket.

Installation Notice

Tightening Torque	31.5 - 38.5 N•m (23.2 - 28.4 lb-ft)

- 5. Replace the gasket with new one.
- 6. Installation should follow the removal procedure in the reverse order.

REMOVAL AND INSTALLATION OF EXHAUST SYSTEM

- 1 Catalytic Converter
- 2 Exhaust Pipe
- 3 Heat Protector Dash
- 4 Heat Protector Front Floor
- 5 Hear Protector Rear Floor
- 6 Gasket
- 7 Front Muffler

- 8 Rear Muffler
- 9 Exhaust Pipe-to-Catalytic Converter Flange Nuts 28 47 N•m (21 35 lb-ft)
- 11 Rear Muffler Pipe Flange-to-Front Muffler Pipe Flange Nuts 28 47 N•m (21 35 lb-ft)